LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Files Functions Typedefs Macros
sqrt03.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine sqrt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 SQRT03 More...
 

Function/Subroutine Documentation

subroutine sqrt03 ( integer  M,
integer  N,
integer  K,
real, dimension( lda, * )  AF,
real, dimension( lda, * )  C,
real, dimension( lda, * )  CC,
real, dimension( lda, * )  Q,
integer  LDA,
real, dimension( * )  TAU,
real, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
real, dimension( * )  RESULT 
)

SQRT03

Purpose:
 SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'.

 SQRT03 compares the results of a call to SORMQR with the results of
 forming Q explicitly by a call to SORGQR and then performing matrix
 multiplication by a call to SGEMM.
Parameters
[in]M
          M is INTEGER
          The order of the orthogonal matrix Q.  M >= 0.
[in]N
          N is INTEGER
          The number of rows or columns of the matrix C; C is m-by-n if
          Q is applied from the left, or n-by-m if Q is applied from
          the right.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  M >= K >= 0.
[in]AF
          AF is REAL array, dimension (LDA,N)
          Details of the QR factorization of an m-by-n matrix, as
          returnedby SGEQRF. See SGEQRF for further details.
[out]C
          C is REAL array, dimension (LDA,N)
[out]CC
          CC is REAL array, dimension (LDA,N)
[out]Q
          Q is REAL array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the QR factorization in AF.
[out]WORK
          WORK is REAL array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is REAL array, dimension (M)
[out]RESULT
          RESULT is REAL array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an m-by-m orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 136 of file sqrt03.f.

Here is the call graph for this function:

Here is the caller graph for this function: