LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Files Functions Typedefs Macros
cla_porcond_x.f File Reference

Go to the source code of this file.

Functions/Subroutines

real function cla_porcond_x (UPLO, N, A, LDA, AF, LDAF, X, INFO, WORK, RWORK)
 CLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices. More...
 

Function/Subroutine Documentation

real function cla_porcond_x ( character  UPLO,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldaf, * )  AF,
integer  LDAF,
complex, dimension( * )  X,
integer  INFO,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK 
)

CLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices.

Download CLA_PORCOND_X + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    CLA_PORCOND_X Computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The triangular factor U or L from the Cholesky factorization
     A = U**H*U or A = L*L**H, as computed by CPOTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]X
          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.
[in]WORK
          WORK is COMPLEX array, dimension (2*N).
     Workspace.
[in]RWORK
          RWORK is REAL array, dimension (N).
     Workspace.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 123 of file cla_porcond_x.f.

Here is the call graph for this function:

Here is the caller graph for this function: