170 SUBROUTINE zlahrd( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
178 INTEGER K, LDA, LDT, LDY, N, NB
181 COMPLEX*16 A( lda, * ), T( ldt, nb ), TAU( nb ),
189 parameter( zero = ( 0.0d+0, 0.0d+0 ),
190 $ one = ( 1.0d+0, 0.0d+0 ) )
217 CALL
zlacgv( i-1, a( k+i-1, 1 ), lda )
218 CALL
zgemv(
'No transpose', n, i-1, -one, y, ldy,
219 $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
220 CALL
zlacgv( i-1, a( k+i-1, 1 ), lda )
232 CALL
zcopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
233 CALL
ztrmv(
'Lower',
'Conjugate transpose',
'Unit', i-1,
234 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
238 CALL
zgemv(
'Conjugate transpose', n-k-i+1, i-1, one,
239 $ a( k+i, 1 ), lda, a( k+i, i ), 1, one,
244 CALL
ztrmv(
'Upper',
'Conjugate transpose',
'Non-unit', i-1,
245 $ t, ldt, t( 1, nb ), 1 )
249 CALL
zgemv(
'No transpose', n-k-i+1, i-1, -one, a( k+i, 1 ),
250 $ lda, t( 1, nb ), 1, one, a( k+i, i ), 1 )
254 CALL
ztrmv(
'Lower',
'No transpose',
'Unit', i-1,
255 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
256 CALL
zaxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
265 CALL
zlarfg( n-k-i+1, ei, a( min( k+i+1, n ), i ), 1,
271 CALL
zgemv(
'No transpose', n, n-k-i+1, one, a( 1, i+1 ), lda,
272 $ a( k+i, i ), 1, zero, y( 1, i ), 1 )
273 CALL
zgemv(
'Conjugate transpose', n-k-i+1, i-1, one,
274 $ a( k+i, 1 ), lda, a( k+i, i ), 1, zero, t( 1, i ),
276 CALL
zgemv(
'No transpose', n, i-1, -one, y, ldy, t( 1, i ), 1,
277 $ one, y( 1, i ), 1 )
278 CALL
zscal( n, tau( i ), y( 1, i ), 1 )
282 CALL
zscal( i-1, -tau( i ), t( 1, i ), 1 )
283 CALL
ztrmv(
'Upper',
'No transpose',
'Non-unit', i-1, t, ldt,
subroutine zlahrd(N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
ZLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th...
subroutine zgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
ZGEMV
subroutine zlacgv(N, X, INCX)
ZLACGV conjugates a complex vector.
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
subroutine zaxpy(N, ZA, ZX, INCX, ZY, INCY)
ZAXPY
subroutine ztrmv(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
ZTRMV
subroutine zlarfg(N, ALPHA, X, INCX, TAU)
ZLARFG generates an elementary reflector (Householder matrix).
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL