75 INTEGER I, INFO, J, RANK
78 COMPLEX*16 A( nmax, nmax )
79 DOUBLE PRECISION RWORK( 2*nmax )
91 COMMON / infoc / infot, nout, ok, lerr
92 COMMON / srnamc / srnamt
100 WRITE( nout, fmt = * )
106 a( i, j ) = 1.d0 / dble( i+j )
111 rwork( nmax+j ) = 0.d0
124 CALL
zpstrf(
'/', 0, a, 1, piv, rank, -1.d0, rwork, info )
125 CALL
chkxer(
'ZPSTRF', infot, nout, lerr, ok )
127 CALL
zpstrf(
'U', -1, a, 1, piv, rank, -1.d0, rwork, info )
128 CALL
chkxer(
'ZPSTRF', infot, nout, lerr, ok )
130 CALL
zpstrf(
'U', 2, a, 1, piv, rank, -1.d0, rwork, info )
131 CALL
chkxer(
'ZPSTRF', infot, nout, lerr, ok )
137 CALL
zpstf2(
'/', 0, a, 1, piv, rank, -1.d0, rwork, info )
138 CALL
chkxer(
'ZPSTF2', infot, nout, lerr, ok )
140 CALL
zpstf2(
'U', -1, a, 1, piv, rank, -1.d0, rwork, info )
141 CALL
chkxer(
'ZPSTF2', infot, nout, lerr, ok )
143 CALL
zpstf2(
'U', 2, a, 1, piv, rank, -1.d0, rwork, info )
144 CALL
chkxer(
'ZPSTF2', infot, nout, lerr, ok )
149 CALL
alaesm( path, ok, nout )
subroutine zpstf2(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
ZPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric or complex Herm...
subroutine zerrps(PATH, NUNIT)
ZERRPS
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
subroutine alaesm(PATH, OK, NOUT)
ALAESM
subroutine zpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
ZPSTRF