00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "libavutil/audioconvert.h"
00028 #include "avcodec.h"
00029 #include "internal.h"
00030 #include "get_bits.h"
00031 #include "mathops.h"
00032 #include "mpegaudiodsp.h"
00033
00034
00035
00036
00037
00038
00039 #include "mpegaudio.h"
00040 #include "mpegaudiodecheader.h"
00041
00042 #define BACKSTEP_SIZE 512
00043 #define EXTRABYTES 24
00044 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
00045
00046
00047 typedef struct GranuleDef {
00048 uint8_t scfsi;
00049 int part2_3_length;
00050 int big_values;
00051 int global_gain;
00052 int scalefac_compress;
00053 uint8_t block_type;
00054 uint8_t switch_point;
00055 int table_select[3];
00056 int subblock_gain[3];
00057 uint8_t scalefac_scale;
00058 uint8_t count1table_select;
00059 int region_size[3];
00060 int preflag;
00061 int short_start, long_end;
00062 uint8_t scale_factors[40];
00063 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18];
00064 } GranuleDef;
00065
00066 typedef struct MPADecodeContext {
00067 MPA_DECODE_HEADER
00068 uint8_t last_buf[LAST_BUF_SIZE];
00069 int last_buf_size;
00070
00071 uint32_t free_format_next_header;
00072 GetBitContext gb;
00073 GetBitContext in_gb;
00074 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
00075 int synth_buf_offset[MPA_MAX_CHANNELS];
00076 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
00077 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18];
00078 GranuleDef granules[2][2];
00079 int adu_mode;
00080 int dither_state;
00081 int err_recognition;
00082 AVCodecContext* avctx;
00083 MPADSPContext mpadsp;
00084 AVFrame frame;
00085 } MPADecodeContext;
00086
00087 #if CONFIG_FLOAT
00088 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
00089 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00090 # define FIXR(x) ((float)(x))
00091 # define FIXHR(x) ((float)(x))
00092 # define MULH3(x, y, s) ((s)*(y)*(x))
00093 # define MULLx(x, y, s) ((y)*(x))
00094 # define RENAME(a) a ## _float
00095 # define OUT_FMT AV_SAMPLE_FMT_FLT
00096 #else
00097 # define SHR(a,b) ((a)>>(b))
00098
00099 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00100 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00101 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00102 # define MULH3(x, y, s) MULH((s)*(x), y)
00103 # define MULLx(x, y, s) MULL(x,y,s)
00104 # define RENAME(a) a ## _fixed
00105 # define OUT_FMT AV_SAMPLE_FMT_S16
00106 #endif
00107
00108
00109
00110 #define HEADER_SIZE 4
00111
00112 #include "mpegaudiodata.h"
00113 #include "mpegaudiodectab.h"
00114
00115
00116 static VLC huff_vlc[16];
00117 static VLC_TYPE huff_vlc_tables[
00118 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
00119 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
00120 ][2];
00121 static const int huff_vlc_tables_sizes[16] = {
00122 0, 128, 128, 128, 130, 128, 154, 166,
00123 142, 204, 190, 170, 542, 460, 662, 414
00124 };
00125 static VLC huff_quad_vlc[2];
00126 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
00127 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
00128
00129 static uint16_t band_index_long[9][23];
00130 #include "mpegaudio_tablegen.h"
00131
00132 static INTFLOAT is_table[2][16];
00133 static INTFLOAT is_table_lsf[2][2][16];
00134 static INTFLOAT csa_table[8][4];
00135
00136 static int16_t division_tab3[1<<6 ];
00137 static int16_t division_tab5[1<<8 ];
00138 static int16_t division_tab9[1<<11];
00139
00140 static int16_t * const division_tabs[4] = {
00141 division_tab3, division_tab5, NULL, division_tab9
00142 };
00143
00144
00145 static uint16_t scale_factor_modshift[64];
00146
00147 static int32_t scale_factor_mult[15][3];
00148
00149
00150 #define SCALE_GEN(v) \
00151 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00152
00153 static const int32_t scale_factor_mult2[3][3] = {
00154 SCALE_GEN(4.0 / 3.0),
00155 SCALE_GEN(4.0 / 5.0),
00156 SCALE_GEN(4.0 / 9.0),
00157 };
00158
00163 static void ff_region_offset2size(GranuleDef *g)
00164 {
00165 int i, k, j = 0;
00166 g->region_size[2] = 576 / 2;
00167 for (i = 0; i < 3; i++) {
00168 k = FFMIN(g->region_size[i], g->big_values);
00169 g->region_size[i] = k - j;
00170 j = k;
00171 }
00172 }
00173
00174 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
00175 {
00176 if (g->block_type == 2)
00177 g->region_size[0] = (36 / 2);
00178 else {
00179 if (s->sample_rate_index <= 2)
00180 g->region_size[0] = (36 / 2);
00181 else if (s->sample_rate_index != 8)
00182 g->region_size[0] = (54 / 2);
00183 else
00184 g->region_size[0] = (108 / 2);
00185 }
00186 g->region_size[1] = (576 / 2);
00187 }
00188
00189 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
00190 {
00191 int l;
00192 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00193
00194 l = FFMIN(ra1 + ra2 + 2, 22);
00195 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
00196 }
00197
00198 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
00199 {
00200 if (g->block_type == 2) {
00201 if (g->switch_point) {
00202
00203
00204
00205 if (s->sample_rate_index <= 2)
00206 g->long_end = 8;
00207 else if (s->sample_rate_index != 8)
00208 g->long_end = 6;
00209 else
00210 g->long_end = 4;
00211
00212 g->short_start = 3;
00213 } else {
00214 g->long_end = 0;
00215 g->short_start = 0;
00216 }
00217 } else {
00218 g->short_start = 13;
00219 g->long_end = 22;
00220 }
00221 }
00222
00223
00224
00225 static inline int l1_unscale(int n, int mant, int scale_factor)
00226 {
00227 int shift, mod;
00228 int64_t val;
00229
00230 shift = scale_factor_modshift[scale_factor];
00231 mod = shift & 3;
00232 shift >>= 2;
00233 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00234 shift += n;
00235
00236 return (int)((val + (1LL << (shift - 1))) >> shift);
00237 }
00238
00239 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00240 {
00241 int shift, mod, val;
00242
00243 shift = scale_factor_modshift[scale_factor];
00244 mod = shift & 3;
00245 shift >>= 2;
00246
00247 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00248
00249 if (shift > 0)
00250 val = (val + (1 << (shift - 1))) >> shift;
00251 return val;
00252 }
00253
00254
00255 static inline int l3_unscale(int value, int exponent)
00256 {
00257 unsigned int m;
00258 int e;
00259
00260 e = table_4_3_exp [4 * value + (exponent & 3)];
00261 m = table_4_3_value[4 * value + (exponent & 3)];
00262 e -= exponent >> 2;
00263 assert(e >= 1);
00264 if (e > 31)
00265 return 0;
00266 m = (m + (1 << (e - 1))) >> e;
00267
00268 return m;
00269 }
00270
00271 static av_cold void decode_init_static(void)
00272 {
00273 int i, j, k;
00274 int offset;
00275
00276
00277 for (i = 0; i < 64; i++) {
00278 int shift, mod;
00279
00280 shift = i / 3;
00281 mod = i % 3;
00282 scale_factor_modshift[i] = mod | (shift << 2);
00283 }
00284
00285
00286 for (i = 0; i < 15; i++) {
00287 int n, norm;
00288 n = i + 2;
00289 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00290 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
00291 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00292 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00293 av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
00294 scale_factor_mult[i][0],
00295 scale_factor_mult[i][1],
00296 scale_factor_mult[i][2]);
00297 }
00298
00299 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00300
00301
00302 offset = 0;
00303 for (i = 1; i < 16; i++) {
00304 const HuffTable *h = &mpa_huff_tables[i];
00305 int xsize, x, y;
00306 uint8_t tmp_bits [512];
00307 uint16_t tmp_codes[512];
00308
00309 memset(tmp_bits , 0, sizeof(tmp_bits ));
00310 memset(tmp_codes, 0, sizeof(tmp_codes));
00311
00312 xsize = h->xsize;
00313
00314 j = 0;
00315 for (x = 0; x < xsize; x++) {
00316 for (y = 0; y < xsize; y++) {
00317 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00318 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00319 }
00320 }
00321
00322
00323 huff_vlc[i].table = huff_vlc_tables+offset;
00324 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00325 init_vlc(&huff_vlc[i], 7, 512,
00326 tmp_bits, 1, 1, tmp_codes, 2, 2,
00327 INIT_VLC_USE_NEW_STATIC);
00328 offset += huff_vlc_tables_sizes[i];
00329 }
00330 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00331
00332 offset = 0;
00333 for (i = 0; i < 2; i++) {
00334 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00335 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00336 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00337 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00338 INIT_VLC_USE_NEW_STATIC);
00339 offset += huff_quad_vlc_tables_sizes[i];
00340 }
00341 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00342
00343 for (i = 0; i < 9; i++) {
00344 k = 0;
00345 for (j = 0; j < 22; j++) {
00346 band_index_long[i][j] = k;
00347 k += band_size_long[i][j];
00348 }
00349 band_index_long[i][22] = k;
00350 }
00351
00352
00353
00354 mpegaudio_tableinit();
00355
00356 for (i = 0; i < 4; i++) {
00357 if (ff_mpa_quant_bits[i] < 0) {
00358 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
00359 int val1, val2, val3, steps;
00360 int val = j;
00361 steps = ff_mpa_quant_steps[i];
00362 val1 = val % steps;
00363 val /= steps;
00364 val2 = val % steps;
00365 val3 = val / steps;
00366 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00367 }
00368 }
00369 }
00370
00371
00372 for (i = 0; i < 7; i++) {
00373 float f;
00374 INTFLOAT v;
00375 if (i != 6) {
00376 f = tan((double)i * M_PI / 12.0);
00377 v = FIXR(f / (1.0 + f));
00378 } else {
00379 v = FIXR(1.0);
00380 }
00381 is_table[0][ i] = v;
00382 is_table[1][6 - i] = v;
00383 }
00384
00385 for (i = 7; i < 16; i++)
00386 is_table[0][i] = is_table[1][i] = 0.0;
00387
00388 for (i = 0; i < 16; i++) {
00389 double f;
00390 int e, k;
00391
00392 for (j = 0; j < 2; j++) {
00393 e = -(j + 1) * ((i + 1) >> 1);
00394 f = pow(2.0, e / 4.0);
00395 k = i & 1;
00396 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00397 is_table_lsf[j][k ][i] = FIXR(1.0);
00398 av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
00399 i, j, (float) is_table_lsf[j][0][i],
00400 (float) is_table_lsf[j][1][i]);
00401 }
00402 }
00403
00404 for (i = 0; i < 8; i++) {
00405 float ci, cs, ca;
00406 ci = ci_table[i];
00407 cs = 1.0 / sqrt(1.0 + ci * ci);
00408 ca = cs * ci;
00409 #if !CONFIG_FLOAT
00410 csa_table[i][0] = FIXHR(cs/4);
00411 csa_table[i][1] = FIXHR(ca/4);
00412 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00413 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00414 #else
00415 csa_table[i][0] = cs;
00416 csa_table[i][1] = ca;
00417 csa_table[i][2] = ca + cs;
00418 csa_table[i][3] = ca - cs;
00419 #endif
00420 }
00421 }
00422
00423 static av_cold int decode_init(AVCodecContext * avctx)
00424 {
00425 static int initialized_tables = 0;
00426 MPADecodeContext *s = avctx->priv_data;
00427
00428 if (!initialized_tables) {
00429 decode_init_static();
00430 initialized_tables = 1;
00431 }
00432
00433 s->avctx = avctx;
00434
00435 ff_mpadsp_init(&s->mpadsp);
00436
00437 avctx->sample_fmt= OUT_FMT;
00438 s->err_recognition = avctx->err_recognition;
00439
00440 if (avctx->codec_id == CODEC_ID_MP3ADU)
00441 s->adu_mode = 1;
00442
00443 avcodec_get_frame_defaults(&s->frame);
00444 avctx->coded_frame = &s->frame;
00445
00446 return 0;
00447 }
00448
00449 #define C3 FIXHR(0.86602540378443864676/2)
00450 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
00451 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
00452 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
00453
00454
00455
00456 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00457 {
00458 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00459
00460 in0 = in[0*3];
00461 in1 = in[1*3] + in[0*3];
00462 in2 = in[2*3] + in[1*3];
00463 in3 = in[3*3] + in[2*3];
00464 in4 = in[4*3] + in[3*3];
00465 in5 = in[5*3] + in[4*3];
00466 in5 += in3;
00467 in3 += in1;
00468
00469 in2 = MULH3(in2, C3, 2);
00470 in3 = MULH3(in3, C3, 4);
00471
00472 t1 = in0 - in4;
00473 t2 = MULH3(in1 - in5, C4, 2);
00474
00475 out[ 7] =
00476 out[10] = t1 + t2;
00477 out[ 1] =
00478 out[ 4] = t1 - t2;
00479
00480 in0 += SHR(in4, 1);
00481 in4 = in0 + in2;
00482 in5 += 2*in1;
00483 in1 = MULH3(in5 + in3, C5, 1);
00484 out[ 8] =
00485 out[ 9] = in4 + in1;
00486 out[ 2] =
00487 out[ 3] = in4 - in1;
00488
00489 in0 -= in2;
00490 in5 = MULH3(in5 - in3, C6, 2);
00491 out[ 0] =
00492 out[ 5] = in0 - in5;
00493 out[ 6] =
00494 out[11] = in0 + in5;
00495 }
00496
00497
00498 static int mp_decode_layer1(MPADecodeContext *s)
00499 {
00500 int bound, i, v, n, ch, j, mant;
00501 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00502 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00503
00504 if (s->mode == MPA_JSTEREO)
00505 bound = (s->mode_ext + 1) * 4;
00506 else
00507 bound = SBLIMIT;
00508
00509
00510 for (i = 0; i < bound; i++) {
00511 for (ch = 0; ch < s->nb_channels; ch++) {
00512 allocation[ch][i] = get_bits(&s->gb, 4);
00513 }
00514 }
00515 for (i = bound; i < SBLIMIT; i++)
00516 allocation[0][i] = get_bits(&s->gb, 4);
00517
00518
00519 for (i = 0; i < bound; i++) {
00520 for (ch = 0; ch < s->nb_channels; ch++) {
00521 if (allocation[ch][i])
00522 scale_factors[ch][i] = get_bits(&s->gb, 6);
00523 }
00524 }
00525 for (i = bound; i < SBLIMIT; i++) {
00526 if (allocation[0][i]) {
00527 scale_factors[0][i] = get_bits(&s->gb, 6);
00528 scale_factors[1][i] = get_bits(&s->gb, 6);
00529 }
00530 }
00531
00532
00533 for (j = 0; j < 12; j++) {
00534 for (i = 0; i < bound; i++) {
00535 for (ch = 0; ch < s->nb_channels; ch++) {
00536 n = allocation[ch][i];
00537 if (n) {
00538 mant = get_bits(&s->gb, n + 1);
00539 v = l1_unscale(n, mant, scale_factors[ch][i]);
00540 } else {
00541 v = 0;
00542 }
00543 s->sb_samples[ch][j][i] = v;
00544 }
00545 }
00546 for (i = bound; i < SBLIMIT; i++) {
00547 n = allocation[0][i];
00548 if (n) {
00549 mant = get_bits(&s->gb, n + 1);
00550 v = l1_unscale(n, mant, scale_factors[0][i]);
00551 s->sb_samples[0][j][i] = v;
00552 v = l1_unscale(n, mant, scale_factors[1][i]);
00553 s->sb_samples[1][j][i] = v;
00554 } else {
00555 s->sb_samples[0][j][i] = 0;
00556 s->sb_samples[1][j][i] = 0;
00557 }
00558 }
00559 }
00560 return 12;
00561 }
00562
00563 static int mp_decode_layer2(MPADecodeContext *s)
00564 {
00565 int sblimit;
00566 const unsigned char *alloc_table;
00567 int table, bit_alloc_bits, i, j, ch, bound, v;
00568 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00569 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00570 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00571 int scale, qindex, bits, steps, k, l, m, b;
00572
00573
00574 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00575 s->sample_rate, s->lsf);
00576 sblimit = ff_mpa_sblimit_table[table];
00577 alloc_table = ff_mpa_alloc_tables[table];
00578
00579 if (s->mode == MPA_JSTEREO)
00580 bound = (s->mode_ext + 1) * 4;
00581 else
00582 bound = sblimit;
00583
00584 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00585
00586
00587 if (bound > sblimit)
00588 bound = sblimit;
00589
00590
00591 j = 0;
00592 for (i = 0; i < bound; i++) {
00593 bit_alloc_bits = alloc_table[j];
00594 for (ch = 0; ch < s->nb_channels; ch++)
00595 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
00596 j += 1 << bit_alloc_bits;
00597 }
00598 for (i = bound; i < sblimit; i++) {
00599 bit_alloc_bits = alloc_table[j];
00600 v = get_bits(&s->gb, bit_alloc_bits);
00601 bit_alloc[0][i] = v;
00602 bit_alloc[1][i] = v;
00603 j += 1 << bit_alloc_bits;
00604 }
00605
00606
00607 for (i = 0; i < sblimit; i++) {
00608 for (ch = 0; ch < s->nb_channels; ch++) {
00609 if (bit_alloc[ch][i])
00610 scale_code[ch][i] = get_bits(&s->gb, 2);
00611 }
00612 }
00613
00614
00615 for (i = 0; i < sblimit; i++) {
00616 for (ch = 0; ch < s->nb_channels; ch++) {
00617 if (bit_alloc[ch][i]) {
00618 sf = scale_factors[ch][i];
00619 switch (scale_code[ch][i]) {
00620 default:
00621 case 0:
00622 sf[0] = get_bits(&s->gb, 6);
00623 sf[1] = get_bits(&s->gb, 6);
00624 sf[2] = get_bits(&s->gb, 6);
00625 break;
00626 case 2:
00627 sf[0] = get_bits(&s->gb, 6);
00628 sf[1] = sf[0];
00629 sf[2] = sf[0];
00630 break;
00631 case 1:
00632 sf[0] = get_bits(&s->gb, 6);
00633 sf[2] = get_bits(&s->gb, 6);
00634 sf[1] = sf[0];
00635 break;
00636 case 3:
00637 sf[0] = get_bits(&s->gb, 6);
00638 sf[2] = get_bits(&s->gb, 6);
00639 sf[1] = sf[2];
00640 break;
00641 }
00642 }
00643 }
00644 }
00645
00646
00647 for (k = 0; k < 3; k++) {
00648 for (l = 0; l < 12; l += 3) {
00649 j = 0;
00650 for (i = 0; i < bound; i++) {
00651 bit_alloc_bits = alloc_table[j];
00652 for (ch = 0; ch < s->nb_channels; ch++) {
00653 b = bit_alloc[ch][i];
00654 if (b) {
00655 scale = scale_factors[ch][i][k];
00656 qindex = alloc_table[j+b];
00657 bits = ff_mpa_quant_bits[qindex];
00658 if (bits < 0) {
00659 int v2;
00660
00661 v = get_bits(&s->gb, -bits);
00662 v2 = division_tabs[qindex][v];
00663 steps = ff_mpa_quant_steps[qindex];
00664
00665 s->sb_samples[ch][k * 12 + l + 0][i] =
00666 l2_unscale_group(steps, v2 & 15, scale);
00667 s->sb_samples[ch][k * 12 + l + 1][i] =
00668 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
00669 s->sb_samples[ch][k * 12 + l + 2][i] =
00670 l2_unscale_group(steps, v2 >> 8 , scale);
00671 } else {
00672 for (m = 0; m < 3; m++) {
00673 v = get_bits(&s->gb, bits);
00674 v = l1_unscale(bits - 1, v, scale);
00675 s->sb_samples[ch][k * 12 + l + m][i] = v;
00676 }
00677 }
00678 } else {
00679 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00680 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00681 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00682 }
00683 }
00684
00685 j += 1 << bit_alloc_bits;
00686 }
00687
00688 for (i = bound; i < sblimit; i++) {
00689 bit_alloc_bits = alloc_table[j];
00690 b = bit_alloc[0][i];
00691 if (b) {
00692 int mant, scale0, scale1;
00693 scale0 = scale_factors[0][i][k];
00694 scale1 = scale_factors[1][i][k];
00695 qindex = alloc_table[j+b];
00696 bits = ff_mpa_quant_bits[qindex];
00697 if (bits < 0) {
00698
00699 v = get_bits(&s->gb, -bits);
00700 steps = ff_mpa_quant_steps[qindex];
00701 mant = v % steps;
00702 v = v / steps;
00703 s->sb_samples[0][k * 12 + l + 0][i] =
00704 l2_unscale_group(steps, mant, scale0);
00705 s->sb_samples[1][k * 12 + l + 0][i] =
00706 l2_unscale_group(steps, mant, scale1);
00707 mant = v % steps;
00708 v = v / steps;
00709 s->sb_samples[0][k * 12 + l + 1][i] =
00710 l2_unscale_group(steps, mant, scale0);
00711 s->sb_samples[1][k * 12 + l + 1][i] =
00712 l2_unscale_group(steps, mant, scale1);
00713 s->sb_samples[0][k * 12 + l + 2][i] =
00714 l2_unscale_group(steps, v, scale0);
00715 s->sb_samples[1][k * 12 + l + 2][i] =
00716 l2_unscale_group(steps, v, scale1);
00717 } else {
00718 for (m = 0; m < 3; m++) {
00719 mant = get_bits(&s->gb, bits);
00720 s->sb_samples[0][k * 12 + l + m][i] =
00721 l1_unscale(bits - 1, mant, scale0);
00722 s->sb_samples[1][k * 12 + l + m][i] =
00723 l1_unscale(bits - 1, mant, scale1);
00724 }
00725 }
00726 } else {
00727 s->sb_samples[0][k * 12 + l + 0][i] = 0;
00728 s->sb_samples[0][k * 12 + l + 1][i] = 0;
00729 s->sb_samples[0][k * 12 + l + 2][i] = 0;
00730 s->sb_samples[1][k * 12 + l + 0][i] = 0;
00731 s->sb_samples[1][k * 12 + l + 1][i] = 0;
00732 s->sb_samples[1][k * 12 + l + 2][i] = 0;
00733 }
00734
00735 j += 1 << bit_alloc_bits;
00736 }
00737
00738 for (i = sblimit; i < SBLIMIT; i++) {
00739 for (ch = 0; ch < s->nb_channels; ch++) {
00740 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00741 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00742 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00743 }
00744 }
00745 }
00746 }
00747 return 3 * 12;
00748 }
00749
00750 #define SPLIT(dst,sf,n) \
00751 if (n == 3) { \
00752 int m = (sf * 171) >> 9; \
00753 dst = sf - 3 * m; \
00754 sf = m; \
00755 } else if (n == 4) { \
00756 dst = sf & 3; \
00757 sf >>= 2; \
00758 } else if (n == 5) { \
00759 int m = (sf * 205) >> 10; \
00760 dst = sf - 5 * m; \
00761 sf = m; \
00762 } else if (n == 6) { \
00763 int m = (sf * 171) >> 10; \
00764 dst = sf - 6 * m; \
00765 sf = m; \
00766 } else { \
00767 dst = 0; \
00768 }
00769
00770 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
00771 int n3)
00772 {
00773 SPLIT(slen[3], sf, n3)
00774 SPLIT(slen[2], sf, n2)
00775 SPLIT(slen[1], sf, n1)
00776 slen[0] = sf;
00777 }
00778
00779 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
00780 int16_t *exponents)
00781 {
00782 const uint8_t *bstab, *pretab;
00783 int len, i, j, k, l, v0, shift, gain, gains[3];
00784 int16_t *exp_ptr;
00785
00786 exp_ptr = exponents;
00787 gain = g->global_gain - 210;
00788 shift = g->scalefac_scale + 1;
00789
00790 bstab = band_size_long[s->sample_rate_index];
00791 pretab = mpa_pretab[g->preflag];
00792 for (i = 0; i < g->long_end; i++) {
00793 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
00794 len = bstab[i];
00795 for (j = len; j > 0; j--)
00796 *exp_ptr++ = v0;
00797 }
00798
00799 if (g->short_start < 13) {
00800 bstab = band_size_short[s->sample_rate_index];
00801 gains[0] = gain - (g->subblock_gain[0] << 3);
00802 gains[1] = gain - (g->subblock_gain[1] << 3);
00803 gains[2] = gain - (g->subblock_gain[2] << 3);
00804 k = g->long_end;
00805 for (i = g->short_start; i < 13; i++) {
00806 len = bstab[i];
00807 for (l = 0; l < 3; l++) {
00808 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
00809 for (j = len; j > 0; j--)
00810 *exp_ptr++ = v0;
00811 }
00812 }
00813 }
00814 }
00815
00816
00817 static inline int get_bitsz(GetBitContext *s, int n)
00818 {
00819 return n ? get_bits(s, n) : 0;
00820 }
00821
00822
00823 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
00824 int *end_pos2)
00825 {
00826 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
00827 s->gb = s->in_gb;
00828 s->in_gb.buffer = NULL;
00829 assert((get_bits_count(&s->gb) & 7) == 0);
00830 skip_bits_long(&s->gb, *pos - *end_pos);
00831 *end_pos2 =
00832 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
00833 *pos = get_bits_count(&s->gb);
00834 }
00835 }
00836
00837
00838
00839
00840
00841
00842
00843 #if CONFIG_FLOAT
00844 #define READ_FLIP_SIGN(dst,src) \
00845 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
00846 AV_WN32A(dst, v);
00847 #else
00848 #define READ_FLIP_SIGN(dst,src) \
00849 v = -get_bits1(&s->gb); \
00850 *(dst) = (*(src) ^ v) - v;
00851 #endif
00852
00853 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
00854 int16_t *exponents, int end_pos2)
00855 {
00856 int s_index;
00857 int i;
00858 int last_pos, bits_left;
00859 VLC *vlc;
00860 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
00861
00862
00863 s_index = 0;
00864 for (i = 0; i < 3; i++) {
00865 int j, k, l, linbits;
00866 j = g->region_size[i];
00867 if (j == 0)
00868 continue;
00869
00870 k = g->table_select[i];
00871 l = mpa_huff_data[k][0];
00872 linbits = mpa_huff_data[k][1];
00873 vlc = &huff_vlc[l];
00874
00875 if (!l) {
00876 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
00877 s_index += 2 * j;
00878 continue;
00879 }
00880
00881
00882 for (; j > 0; j--) {
00883 int exponent, x, y;
00884 int v;
00885 int pos = get_bits_count(&s->gb);
00886
00887 if (pos >= end_pos){
00888
00889 switch_buffer(s, &pos, &end_pos, &end_pos2);
00890
00891 if (pos >= end_pos)
00892 break;
00893 }
00894 y = get_vlc2(&s->gb, vlc->table, 7, 3);
00895
00896 if (!y) {
00897 g->sb_hybrid[s_index ] =
00898 g->sb_hybrid[s_index+1] = 0;
00899 s_index += 2;
00900 continue;
00901 }
00902
00903 exponent= exponents[s_index];
00904
00905 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
00906 i, g->region_size[i] - j, x, y, exponent);
00907 if (y & 16) {
00908 x = y >> 5;
00909 y = y & 0x0f;
00910 if (x < 15) {
00911 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
00912 } else {
00913 x += get_bitsz(&s->gb, linbits);
00914 v = l3_unscale(x, exponent);
00915 if (get_bits1(&s->gb))
00916 v = -v;
00917 g->sb_hybrid[s_index] = v;
00918 }
00919 if (y < 15) {
00920 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
00921 } else {
00922 y += get_bitsz(&s->gb, linbits);
00923 v = l3_unscale(y, exponent);
00924 if (get_bits1(&s->gb))
00925 v = -v;
00926 g->sb_hybrid[s_index+1] = v;
00927 }
00928 } else {
00929 x = y >> 5;
00930 y = y & 0x0f;
00931 x += y;
00932 if (x < 15) {
00933 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
00934 } else {
00935 x += get_bitsz(&s->gb, linbits);
00936 v = l3_unscale(x, exponent);
00937 if (get_bits1(&s->gb))
00938 v = -v;
00939 g->sb_hybrid[s_index+!!y] = v;
00940 }
00941 g->sb_hybrid[s_index + !y] = 0;
00942 }
00943 s_index += 2;
00944 }
00945 }
00946
00947
00948 vlc = &huff_quad_vlc[g->count1table_select];
00949 last_pos = 0;
00950 while (s_index <= 572) {
00951 int pos, code;
00952 pos = get_bits_count(&s->gb);
00953 if (pos >= end_pos) {
00954 if (pos > end_pos2 && last_pos) {
00955
00956
00957 s_index -= 4;
00958 skip_bits_long(&s->gb, last_pos - pos);
00959 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
00960 if(s->err_recognition & AV_EF_BITSTREAM)
00961 s_index=0;
00962 break;
00963 }
00964
00965 switch_buffer(s, &pos, &end_pos, &end_pos2);
00966
00967 if (pos >= end_pos)
00968 break;
00969 }
00970 last_pos = pos;
00971
00972 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
00973 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
00974 g->sb_hybrid[s_index+0] =
00975 g->sb_hybrid[s_index+1] =
00976 g->sb_hybrid[s_index+2] =
00977 g->sb_hybrid[s_index+3] = 0;
00978 while (code) {
00979 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
00980 int v;
00981 int pos = s_index + idxtab[code];
00982 code ^= 8 >> idxtab[code];
00983 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
00984 }
00985 s_index += 4;
00986 }
00987
00988 bits_left = end_pos2 - get_bits_count(&s->gb);
00989
00990 if (bits_left < 0 && (s->err_recognition & AV_EF_BUFFER)) {
00991 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00992 s_index=0;
00993 } else if (bits_left > 0 && (s->err_recognition & AV_EF_BUFFER)) {
00994 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
00995 s_index = 0;
00996 }
00997 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
00998 skip_bits_long(&s->gb, bits_left);
00999
01000 i = get_bits_count(&s->gb);
01001 switch_buffer(s, &i, &end_pos, &end_pos2);
01002
01003 return 0;
01004 }
01005
01006
01007
01008
01009 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01010 {
01011 int i, j, len;
01012 INTFLOAT *ptr, *dst, *ptr1;
01013 INTFLOAT tmp[576];
01014
01015 if (g->block_type != 2)
01016 return;
01017
01018 if (g->switch_point) {
01019 if (s->sample_rate_index != 8)
01020 ptr = g->sb_hybrid + 36;
01021 else
01022 ptr = g->sb_hybrid + 48;
01023 } else {
01024 ptr = g->sb_hybrid;
01025 }
01026
01027 for (i = g->short_start; i < 13; i++) {
01028 len = band_size_short[s->sample_rate_index][i];
01029 ptr1 = ptr;
01030 dst = tmp;
01031 for (j = len; j > 0; j--) {
01032 *dst++ = ptr[0*len];
01033 *dst++ = ptr[1*len];
01034 *dst++ = ptr[2*len];
01035 ptr++;
01036 }
01037 ptr += 2 * len;
01038 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01039 }
01040 }
01041
01042 #define ISQRT2 FIXR(0.70710678118654752440)
01043
01044 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
01045 {
01046 int i, j, k, l;
01047 int sf_max, sf, len, non_zero_found;
01048 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01049 int non_zero_found_short[3];
01050
01051
01052 if (s->mode_ext & MODE_EXT_I_STEREO) {
01053 if (!s->lsf) {
01054 is_tab = is_table;
01055 sf_max = 7;
01056 } else {
01057 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01058 sf_max = 16;
01059 }
01060
01061 tab0 = g0->sb_hybrid + 576;
01062 tab1 = g1->sb_hybrid + 576;
01063
01064 non_zero_found_short[0] = 0;
01065 non_zero_found_short[1] = 0;
01066 non_zero_found_short[2] = 0;
01067 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01068 for (i = 12; i >= g1->short_start; i--) {
01069
01070 if (i != 11)
01071 k -= 3;
01072 len = band_size_short[s->sample_rate_index][i];
01073 for (l = 2; l >= 0; l--) {
01074 tab0 -= len;
01075 tab1 -= len;
01076 if (!non_zero_found_short[l]) {
01077
01078 for (j = 0; j < len; j++) {
01079 if (tab1[j] != 0) {
01080 non_zero_found_short[l] = 1;
01081 goto found1;
01082 }
01083 }
01084 sf = g1->scale_factors[k + l];
01085 if (sf >= sf_max)
01086 goto found1;
01087
01088 v1 = is_tab[0][sf];
01089 v2 = is_tab[1][sf];
01090 for (j = 0; j < len; j++) {
01091 tmp0 = tab0[j];
01092 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01093 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01094 }
01095 } else {
01096 found1:
01097 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01098
01099
01100 for (j = 0; j < len; j++) {
01101 tmp0 = tab0[j];
01102 tmp1 = tab1[j];
01103 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01104 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01105 }
01106 }
01107 }
01108 }
01109 }
01110
01111 non_zero_found = non_zero_found_short[0] |
01112 non_zero_found_short[1] |
01113 non_zero_found_short[2];
01114
01115 for (i = g1->long_end - 1;i >= 0;i--) {
01116 len = band_size_long[s->sample_rate_index][i];
01117 tab0 -= len;
01118 tab1 -= len;
01119
01120 if (!non_zero_found) {
01121 for (j = 0; j < len; j++) {
01122 if (tab1[j] != 0) {
01123 non_zero_found = 1;
01124 goto found2;
01125 }
01126 }
01127
01128 k = (i == 21) ? 20 : i;
01129 sf = g1->scale_factors[k];
01130 if (sf >= sf_max)
01131 goto found2;
01132 v1 = is_tab[0][sf];
01133 v2 = is_tab[1][sf];
01134 for (j = 0; j < len; j++) {
01135 tmp0 = tab0[j];
01136 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01137 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01138 }
01139 } else {
01140 found2:
01141 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01142
01143
01144 for (j = 0; j < len; j++) {
01145 tmp0 = tab0[j];
01146 tmp1 = tab1[j];
01147 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01148 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01149 }
01150 }
01151 }
01152 }
01153 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01154
01155
01156
01157 tab0 = g0->sb_hybrid;
01158 tab1 = g1->sb_hybrid;
01159 for (i = 0; i < 576; i++) {
01160 tmp0 = tab0[i];
01161 tmp1 = tab1[i];
01162 tab0[i] = tmp0 + tmp1;
01163 tab1[i] = tmp0 - tmp1;
01164 }
01165 }
01166 }
01167
01168 #if CONFIG_FLOAT
01169 #define AA(j) do { \
01170 float tmp0 = ptr[-1-j]; \
01171 float tmp1 = ptr[ j]; \
01172 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
01173 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
01174 } while (0)
01175 #else
01176 #define AA(j) do { \
01177 int tmp0 = ptr[-1-j]; \
01178 int tmp1 = ptr[ j]; \
01179 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
01180 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
01181 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
01182 } while (0)
01183 #endif
01184
01185 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
01186 {
01187 INTFLOAT *ptr;
01188 int n, i;
01189
01190
01191 if (g->block_type == 2) {
01192 if (!g->switch_point)
01193 return;
01194
01195 n = 1;
01196 } else {
01197 n = SBLIMIT - 1;
01198 }
01199
01200 ptr = g->sb_hybrid + 18;
01201 for (i = n; i > 0; i--) {
01202 AA(0);
01203 AA(1);
01204 AA(2);
01205 AA(3);
01206 AA(4);
01207 AA(5);
01208 AA(6);
01209 AA(7);
01210
01211 ptr += 18;
01212 }
01213 }
01214
01215 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
01216 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
01217 {
01218 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
01219 INTFLOAT out2[12];
01220 int i, j, mdct_long_end, sblimit;
01221
01222
01223 ptr = g->sb_hybrid + 576;
01224 ptr1 = g->sb_hybrid + 2 * 18;
01225 while (ptr >= ptr1) {
01226 int32_t *p;
01227 ptr -= 6;
01228 p = (int32_t*)ptr;
01229 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01230 break;
01231 }
01232 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01233
01234 if (g->block_type == 2) {
01235
01236 if (g->switch_point)
01237 mdct_long_end = 2;
01238 else
01239 mdct_long_end = 0;
01240 } else {
01241 mdct_long_end = sblimit;
01242 }
01243
01244 s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
01245 mdct_long_end, g->switch_point,
01246 g->block_type);
01247
01248 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
01249 ptr = g->sb_hybrid + 18 * mdct_long_end;
01250
01251 for (j = mdct_long_end; j < sblimit; j++) {
01252
01253 win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
01254 out_ptr = sb_samples + j;
01255
01256 for (i = 0; i < 6; i++) {
01257 *out_ptr = buf[4*i];
01258 out_ptr += SBLIMIT;
01259 }
01260 imdct12(out2, ptr + 0);
01261 for (i = 0; i < 6; i++) {
01262 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
01263 buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
01264 out_ptr += SBLIMIT;
01265 }
01266 imdct12(out2, ptr + 1);
01267 for (i = 0; i < 6; i++) {
01268 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
01269 buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
01270 out_ptr += SBLIMIT;
01271 }
01272 imdct12(out2, ptr + 2);
01273 for (i = 0; i < 6; i++) {
01274 buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
01275 buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
01276 buf[4*(i + 6*2)] = 0;
01277 }
01278 ptr += 18;
01279 buf += (j&3) != 3 ? 1 : (4*18-3);
01280 }
01281
01282 for (j = sblimit; j < SBLIMIT; j++) {
01283
01284 out_ptr = sb_samples + j;
01285 for (i = 0; i < 18; i++) {
01286 *out_ptr = buf[4*i];
01287 buf[4*i] = 0;
01288 out_ptr += SBLIMIT;
01289 }
01290 buf += (j&3) != 3 ? 1 : (4*18-3);
01291 }
01292 }
01293
01294
01295 static int mp_decode_layer3(MPADecodeContext *s)
01296 {
01297 int nb_granules, main_data_begin;
01298 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01299 GranuleDef *g;
01300 int16_t exponents[576];
01301
01302
01303 if (s->lsf) {
01304 main_data_begin = get_bits(&s->gb, 8);
01305 skip_bits(&s->gb, s->nb_channels);
01306 nb_granules = 1;
01307 } else {
01308 main_data_begin = get_bits(&s->gb, 9);
01309 if (s->nb_channels == 2)
01310 skip_bits(&s->gb, 3);
01311 else
01312 skip_bits(&s->gb, 5);
01313 nb_granules = 2;
01314 for (ch = 0; ch < s->nb_channels; ch++) {
01315 s->granules[ch][0].scfsi = 0;
01316 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01317 }
01318 }
01319
01320 for (gr = 0; gr < nb_granules; gr++) {
01321 for (ch = 0; ch < s->nb_channels; ch++) {
01322 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01323 g = &s->granules[ch][gr];
01324 g->part2_3_length = get_bits(&s->gb, 12);
01325 g->big_values = get_bits(&s->gb, 9);
01326 if (g->big_values > 288) {
01327 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01328 return AVERROR_INVALIDDATA;
01329 }
01330
01331 g->global_gain = get_bits(&s->gb, 8);
01332
01333
01334 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01335 MODE_EXT_MS_STEREO)
01336 g->global_gain -= 2;
01337 if (s->lsf)
01338 g->scalefac_compress = get_bits(&s->gb, 9);
01339 else
01340 g->scalefac_compress = get_bits(&s->gb, 4);
01341 blocksplit_flag = get_bits1(&s->gb);
01342 if (blocksplit_flag) {
01343 g->block_type = get_bits(&s->gb, 2);
01344 if (g->block_type == 0) {
01345 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01346 return AVERROR_INVALIDDATA;
01347 }
01348 g->switch_point = get_bits1(&s->gb);
01349 for (i = 0; i < 2; i++)
01350 g->table_select[i] = get_bits(&s->gb, 5);
01351 for (i = 0; i < 3; i++)
01352 g->subblock_gain[i] = get_bits(&s->gb, 3);
01353 ff_init_short_region(s, g);
01354 } else {
01355 int region_address1, region_address2;
01356 g->block_type = 0;
01357 g->switch_point = 0;
01358 for (i = 0; i < 3; i++)
01359 g->table_select[i] = get_bits(&s->gb, 5);
01360
01361 region_address1 = get_bits(&s->gb, 4);
01362 region_address2 = get_bits(&s->gb, 3);
01363 av_dlog(s->avctx, "region1=%d region2=%d\n",
01364 region_address1, region_address2);
01365 ff_init_long_region(s, g, region_address1, region_address2);
01366 }
01367 ff_region_offset2size(g);
01368 ff_compute_band_indexes(s, g);
01369
01370 g->preflag = 0;
01371 if (!s->lsf)
01372 g->preflag = get_bits1(&s->gb);
01373 g->scalefac_scale = get_bits1(&s->gb);
01374 g->count1table_select = get_bits1(&s->gb);
01375 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01376 g->block_type, g->switch_point);
01377 }
01378 }
01379
01380 if (!s->adu_mode) {
01381 int skip;
01382 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01383 int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0,
01384 FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
01385 assert((get_bits_count(&s->gb) & 7) == 0);
01386
01387 av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01388
01389
01390 memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
01391 s->in_gb = s->gb;
01392 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01393 #if !UNCHECKED_BITSTREAM_READER
01394 s->gb.size_in_bits_plus8 += extrasize * 8;
01395 #endif
01396 s->last_buf_size <<= 3;
01397 for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
01398 for (ch = 0; ch < s->nb_channels; ch++) {
01399 g = &s->granules[ch][gr];
01400 s->last_buf_size += g->part2_3_length;
01401 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01402 }
01403 }
01404 skip = s->last_buf_size - 8 * main_data_begin;
01405 if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
01406 skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
01407 s->gb = s->in_gb;
01408 s->in_gb.buffer = NULL;
01409 } else {
01410 skip_bits_long(&s->gb, skip);
01411 }
01412 } else {
01413 gr = 0;
01414 }
01415
01416 for (; gr < nb_granules; gr++) {
01417 for (ch = 0; ch < s->nb_channels; ch++) {
01418 g = &s->granules[ch][gr];
01419 bits_pos = get_bits_count(&s->gb);
01420
01421 if (!s->lsf) {
01422 uint8_t *sc;
01423 int slen, slen1, slen2;
01424
01425
01426 slen1 = slen_table[0][g->scalefac_compress];
01427 slen2 = slen_table[1][g->scalefac_compress];
01428 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01429 if (g->block_type == 2) {
01430 n = g->switch_point ? 17 : 18;
01431 j = 0;
01432 if (slen1) {
01433 for (i = 0; i < n; i++)
01434 g->scale_factors[j++] = get_bits(&s->gb, slen1);
01435 } else {
01436 for (i = 0; i < n; i++)
01437 g->scale_factors[j++] = 0;
01438 }
01439 if (slen2) {
01440 for (i = 0; i < 18; i++)
01441 g->scale_factors[j++] = get_bits(&s->gb, slen2);
01442 for (i = 0; i < 3; i++)
01443 g->scale_factors[j++] = 0;
01444 } else {
01445 for (i = 0; i < 21; i++)
01446 g->scale_factors[j++] = 0;
01447 }
01448 } else {
01449 sc = s->granules[ch][0].scale_factors;
01450 j = 0;
01451 for (k = 0; k < 4; k++) {
01452 n = k == 0 ? 6 : 5;
01453 if ((g->scfsi & (0x8 >> k)) == 0) {
01454 slen = (k < 2) ? slen1 : slen2;
01455 if (slen) {
01456 for (i = 0; i < n; i++)
01457 g->scale_factors[j++] = get_bits(&s->gb, slen);
01458 } else {
01459 for (i = 0; i < n; i++)
01460 g->scale_factors[j++] = 0;
01461 }
01462 } else {
01463
01464 for (i = 0; i < n; i++) {
01465 g->scale_factors[j] = sc[j];
01466 j++;
01467 }
01468 }
01469 }
01470 g->scale_factors[j++] = 0;
01471 }
01472 } else {
01473 int tindex, tindex2, slen[4], sl, sf;
01474
01475
01476 if (g->block_type == 2)
01477 tindex = g->switch_point ? 2 : 1;
01478 else
01479 tindex = 0;
01480
01481 sf = g->scalefac_compress;
01482 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01483
01484 sf >>= 1;
01485 if (sf < 180) {
01486 lsf_sf_expand(slen, sf, 6, 6, 0);
01487 tindex2 = 3;
01488 } else if (sf < 244) {
01489 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01490 tindex2 = 4;
01491 } else {
01492 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01493 tindex2 = 5;
01494 }
01495 } else {
01496
01497 if (sf < 400) {
01498 lsf_sf_expand(slen, sf, 5, 4, 4);
01499 tindex2 = 0;
01500 } else if (sf < 500) {
01501 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01502 tindex2 = 1;
01503 } else {
01504 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01505 tindex2 = 2;
01506 g->preflag = 1;
01507 }
01508 }
01509
01510 j = 0;
01511 for (k = 0; k < 4; k++) {
01512 n = lsf_nsf_table[tindex2][tindex][k];
01513 sl = slen[k];
01514 if (sl) {
01515 for (i = 0; i < n; i++)
01516 g->scale_factors[j++] = get_bits(&s->gb, sl);
01517 } else {
01518 for (i = 0; i < n; i++)
01519 g->scale_factors[j++] = 0;
01520 }
01521 }
01522
01523 for (; j < 40; j++)
01524 g->scale_factors[j] = 0;
01525 }
01526
01527 exponents_from_scale_factors(s, g, exponents);
01528
01529
01530 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01531 }
01532
01533 if (s->nb_channels == 2)
01534 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01535
01536 for (ch = 0; ch < s->nb_channels; ch++) {
01537 g = &s->granules[ch][gr];
01538
01539 reorder_block(s, g);
01540 compute_antialias(s, g);
01541 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01542 }
01543 }
01544 if (get_bits_count(&s->gb) < 0)
01545 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01546 return nb_granules * 18;
01547 }
01548
01549 static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
01550 const uint8_t *buf, int buf_size)
01551 {
01552 int i, nb_frames, ch, ret;
01553 OUT_INT *samples_ptr;
01554
01555 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
01556
01557
01558 if (s->error_protection)
01559 skip_bits(&s->gb, 16);
01560
01561 switch(s->layer) {
01562 case 1:
01563 s->avctx->frame_size = 384;
01564 nb_frames = mp_decode_layer1(s);
01565 break;
01566 case 2:
01567 s->avctx->frame_size = 1152;
01568 nb_frames = mp_decode_layer2(s);
01569 break;
01570 case 3:
01571 s->avctx->frame_size = s->lsf ? 576 : 1152;
01572 default:
01573 nb_frames = mp_decode_layer3(s);
01574
01575 if (nb_frames < 0)
01576 return nb_frames;
01577
01578 s->last_buf_size=0;
01579 if (s->in_gb.buffer) {
01580 align_get_bits(&s->gb);
01581 i = get_bits_left(&s->gb)>>3;
01582 if (i >= 0 && i <= BACKSTEP_SIZE) {
01583 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01584 s->last_buf_size=i;
01585 } else
01586 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01587 s->gb = s->in_gb;
01588 s->in_gb.buffer = NULL;
01589 }
01590
01591 align_get_bits(&s->gb);
01592 assert((get_bits_count(&s->gb) & 7) == 0);
01593 i = get_bits_left(&s->gb) >> 3;
01594
01595 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
01596 if (i < 0)
01597 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
01598 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
01599 }
01600 assert(i <= buf_size - HEADER_SIZE && i >= 0);
01601 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
01602 s->last_buf_size += i;
01603 }
01604
01605
01606 if (!samples) {
01607 s->frame.nb_samples = s->avctx->frame_size;
01608 if ((ret = ff_get_buffer(s->avctx, &s->frame)) < 0) {
01609 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01610 return ret;
01611 }
01612 samples = (OUT_INT *)s->frame.data[0];
01613 }
01614
01615
01616 for (ch = 0; ch < s->nb_channels; ch++) {
01617 samples_ptr = samples + ch;
01618 for (i = 0; i < nb_frames; i++) {
01619 RENAME(ff_mpa_synth_filter)(
01620 &s->mpadsp,
01621 s->synth_buf[ch], &(s->synth_buf_offset[ch]),
01622 RENAME(ff_mpa_synth_window), &s->dither_state,
01623 samples_ptr, s->nb_channels,
01624 s->sb_samples[ch][i]);
01625 samples_ptr += 32 * s->nb_channels;
01626 }
01627 }
01628
01629 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
01630 }
01631
01632 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
01633 AVPacket *avpkt)
01634 {
01635 const uint8_t *buf = avpkt->data;
01636 int buf_size = avpkt->size;
01637 MPADecodeContext *s = avctx->priv_data;
01638 uint32_t header;
01639 int ret;
01640
01641 if (buf_size < HEADER_SIZE)
01642 return AVERROR_INVALIDDATA;
01643
01644 header = AV_RB32(buf);
01645 if (ff_mpa_check_header(header) < 0) {
01646 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
01647 return AVERROR_INVALIDDATA;
01648 }
01649
01650 if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
01651
01652 s->frame_size = -1;
01653 return AVERROR_INVALIDDATA;
01654 }
01655
01656 avctx->channels = s->nb_channels;
01657 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
01658 if (!avctx->bit_rate)
01659 avctx->bit_rate = s->bit_rate;
01660 avctx->sub_id = s->layer;
01661
01662 if (s->frame_size <= 0 || s->frame_size > buf_size) {
01663 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01664 return AVERROR_INVALIDDATA;
01665 } else if (s->frame_size < buf_size) {
01666 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
01667 buf_size= s->frame_size;
01668 }
01669
01670 ret = mp_decode_frame(s, NULL, buf, buf_size);
01671 if (ret >= 0) {
01672 *got_frame_ptr = 1;
01673 *(AVFrame *)data = s->frame;
01674 avctx->sample_rate = s->sample_rate;
01675
01676 } else {
01677 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01678
01679
01680
01681
01682
01683 *got_frame_ptr = 0;
01684 if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
01685 return ret;
01686 }
01687 s->frame_size = 0;
01688 return buf_size;
01689 }
01690
01691 static void flush(AVCodecContext *avctx)
01692 {
01693 MPADecodeContext *s = avctx->priv_data;
01694 memset(s->synth_buf, 0, sizeof(s->synth_buf));
01695 s->last_buf_size = 0;
01696 }
01697
01698 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
01699 static int decode_frame_adu(AVCodecContext *avctx, void *data,
01700 int *got_frame_ptr, AVPacket *avpkt)
01701 {
01702 const uint8_t *buf = avpkt->data;
01703 int buf_size = avpkt->size;
01704 MPADecodeContext *s = avctx->priv_data;
01705 uint32_t header;
01706 int len, out_size, ret = 0;
01707
01708 len = buf_size;
01709
01710
01711 if (buf_size < HEADER_SIZE) {
01712 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
01713 return AVERROR_INVALIDDATA;
01714 }
01715
01716
01717 if (len > MPA_MAX_CODED_FRAME_SIZE)
01718 len = MPA_MAX_CODED_FRAME_SIZE;
01719
01720
01721 header = AV_RB32(buf) | 0xffe00000;
01722
01723 if (ff_mpa_check_header(header) < 0) {
01724 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
01725 return AVERROR_INVALIDDATA;
01726 }
01727
01728 avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
01729
01730 avctx->sample_rate = s->sample_rate;
01731 avctx->channels = s->nb_channels;
01732 if (!avctx->bit_rate)
01733 avctx->bit_rate = s->bit_rate;
01734 avctx->sub_id = s->layer;
01735
01736 s->frame_size = len;
01737
01738 #if FF_API_PARSE_FRAME
01739 if (avctx->parse_only)
01740 out_size = buf_size;
01741 else
01742 #endif
01743 ret = mp_decode_frame(s, NULL, buf, buf_size);
01744 if (ret < 0) {
01745 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01746 return ret;
01747 }
01748
01749 *got_frame_ptr = 1;
01750 *(AVFrame *)data = s->frame;
01751
01752 return buf_size;
01753 }
01754 #endif
01755
01756 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
01757
01761 typedef struct MP3On4DecodeContext {
01762 AVFrame *frame;
01763 int frames;
01764 int syncword;
01765 const uint8_t *coff;
01766 MPADecodeContext *mp3decctx[5];
01767 OUT_INT *decoded_buf;
01768 } MP3On4DecodeContext;
01769
01770 #include "mpeg4audio.h"
01771
01772
01773
01774
01775 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
01776
01777
01778 static const uint8_t chan_offset[8][5] = {
01779 { 0 },
01780 { 0 },
01781 { 0 },
01782 { 2, 0 },
01783 { 2, 0, 3 },
01784 { 2, 0, 3 },
01785 { 2, 0, 4, 3 },
01786 { 2, 0, 6, 4, 3 },
01787 };
01788
01789
01790 static const int16_t chan_layout[8] = {
01791 0,
01792 AV_CH_LAYOUT_MONO,
01793 AV_CH_LAYOUT_STEREO,
01794 AV_CH_LAYOUT_SURROUND,
01795 AV_CH_LAYOUT_4POINT0,
01796 AV_CH_LAYOUT_5POINT0,
01797 AV_CH_LAYOUT_5POINT1,
01798 AV_CH_LAYOUT_7POINT1
01799 };
01800
01801 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
01802 {
01803 MP3On4DecodeContext *s = avctx->priv_data;
01804 int i;
01805
01806 for (i = 0; i < s->frames; i++)
01807 av_free(s->mp3decctx[i]);
01808
01809 av_freep(&s->decoded_buf);
01810
01811 return 0;
01812 }
01813
01814
01815 static int decode_init_mp3on4(AVCodecContext * avctx)
01816 {
01817 MP3On4DecodeContext *s = avctx->priv_data;
01818 MPEG4AudioConfig cfg;
01819 int i;
01820
01821 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
01822 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
01823 return AVERROR_INVALIDDATA;
01824 }
01825
01826 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
01827 avctx->extradata_size * 8, 1);
01828 if (!cfg.chan_config || cfg.chan_config > 7) {
01829 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
01830 return AVERROR_INVALIDDATA;
01831 }
01832 s->frames = mp3Frames[cfg.chan_config];
01833 s->coff = chan_offset[cfg.chan_config];
01834 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
01835 avctx->channel_layout = chan_layout[cfg.chan_config];
01836
01837 if (cfg.sample_rate < 16000)
01838 s->syncword = 0xffe00000;
01839 else
01840 s->syncword = 0xfff00000;
01841
01842
01843
01844
01845
01846
01847
01848 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
01849 if (!s->mp3decctx[0])
01850 goto alloc_fail;
01851
01852 avctx->priv_data = s->mp3decctx[0];
01853 decode_init(avctx);
01854 s->frame = avctx->coded_frame;
01855
01856 avctx->priv_data = s;
01857 s->mp3decctx[0]->adu_mode = 1;
01858
01859
01860
01861
01862 for (i = 1; i < s->frames; i++) {
01863 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
01864 if (!s->mp3decctx[i])
01865 goto alloc_fail;
01866 s->mp3decctx[i]->adu_mode = 1;
01867 s->mp3decctx[i]->avctx = avctx;
01868 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
01869 }
01870
01871
01872 if (s->frames > 1) {
01873 s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
01874 sizeof(*s->decoded_buf));
01875 if (!s->decoded_buf)
01876 goto alloc_fail;
01877 }
01878
01879 return 0;
01880 alloc_fail:
01881 decode_close_mp3on4(avctx);
01882 return AVERROR(ENOMEM);
01883 }
01884
01885
01886 static void flush_mp3on4(AVCodecContext *avctx)
01887 {
01888 int i;
01889 MP3On4DecodeContext *s = avctx->priv_data;
01890
01891 for (i = 0; i < s->frames; i++) {
01892 MPADecodeContext *m = s->mp3decctx[i];
01893 memset(m->synth_buf, 0, sizeof(m->synth_buf));
01894 m->last_buf_size = 0;
01895 }
01896 }
01897
01898
01899 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
01900 int *got_frame_ptr, AVPacket *avpkt)
01901 {
01902 const uint8_t *buf = avpkt->data;
01903 int buf_size = avpkt->size;
01904 MP3On4DecodeContext *s = avctx->priv_data;
01905 MPADecodeContext *m;
01906 int fsize, len = buf_size, out_size = 0;
01907 uint32_t header;
01908 OUT_INT *out_samples;
01909 OUT_INT *outptr, *bp;
01910 int fr, j, n, ch, ret;
01911
01912
01913 s->frame->nb_samples = MPA_FRAME_SIZE;
01914 if ((ret = ff_get_buffer(avctx, s->frame)) < 0) {
01915 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01916 return ret;
01917 }
01918 out_samples = (OUT_INT *)s->frame->data[0];
01919
01920
01921 if (buf_size < HEADER_SIZE)
01922 return AVERROR_INVALIDDATA;
01923
01924
01925 outptr = s->frames == 1 ? out_samples : s->decoded_buf;
01926
01927 avctx->bit_rate = 0;
01928
01929 ch = 0;
01930 for (fr = 0; fr < s->frames; fr++) {
01931 fsize = AV_RB16(buf) >> 4;
01932 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
01933 m = s->mp3decctx[fr];
01934 assert(m != NULL);
01935
01936 if (fsize < HEADER_SIZE) {
01937 av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
01938 return AVERROR_INVALIDDATA;
01939 }
01940 header = (AV_RB32(buf) & 0x000fffff) | s->syncword;
01941
01942 if (ff_mpa_check_header(header) < 0)
01943 break;
01944
01945 avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
01946
01947 if (ch + m->nb_channels > avctx->channels ||
01948 s->coff[fr] + m->nb_channels > avctx->channels) {
01949 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
01950 "channel count\n");
01951 return AVERROR_INVALIDDATA;
01952 }
01953 ch += m->nb_channels;
01954
01955 if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
01956 return ret;
01957
01958 out_size += ret;
01959 buf += fsize;
01960 len -= fsize;
01961
01962 if (s->frames > 1) {
01963 n = m->avctx->frame_size*m->nb_channels;
01964
01965 bp = out_samples + s->coff[fr];
01966 if (m->nb_channels == 1) {
01967 for (j = 0; j < n; j++) {
01968 *bp = s->decoded_buf[j];
01969 bp += avctx->channels;
01970 }
01971 } else {
01972 for (j = 0; j < n; j++) {
01973 bp[0] = s->decoded_buf[j++];
01974 bp[1] = s->decoded_buf[j];
01975 bp += avctx->channels;
01976 }
01977 }
01978 }
01979 avctx->bit_rate += m->bit_rate;
01980 }
01981
01982
01983 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
01984
01985 s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
01986 *got_frame_ptr = 1;
01987 *(AVFrame *)data = *s->frame;
01988
01989 return buf_size;
01990 }
01991 #endif
01992
01993 #if !CONFIG_FLOAT
01994 #if CONFIG_MP1_DECODER
01995 AVCodec ff_mp1_decoder = {
01996 .name = "mp1",
01997 .type = AVMEDIA_TYPE_AUDIO,
01998 .id = CODEC_ID_MP1,
01999 .priv_data_size = sizeof(MPADecodeContext),
02000 .init = decode_init,
02001 .decode = decode_frame,
02002 #if FF_API_PARSE_FRAME
02003 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02004 #else
02005 .capabilities = CODEC_CAP_DR1,
02006 #endif
02007 .flush = flush,
02008 .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
02009 };
02010 #endif
02011 #if CONFIG_MP2_DECODER
02012 AVCodec ff_mp2_decoder = {
02013 .name = "mp2",
02014 .type = AVMEDIA_TYPE_AUDIO,
02015 .id = CODEC_ID_MP2,
02016 .priv_data_size = sizeof(MPADecodeContext),
02017 .init = decode_init,
02018 .decode = decode_frame,
02019 #if FF_API_PARSE_FRAME
02020 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02021 #else
02022 .capabilities = CODEC_CAP_DR1,
02023 #endif
02024 .flush = flush,
02025 .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02026 };
02027 #endif
02028 #if CONFIG_MP3_DECODER
02029 AVCodec ff_mp3_decoder = {
02030 .name = "mp3",
02031 .type = AVMEDIA_TYPE_AUDIO,
02032 .id = CODEC_ID_MP3,
02033 .priv_data_size = sizeof(MPADecodeContext),
02034 .init = decode_init,
02035 .decode = decode_frame,
02036 #if FF_API_PARSE_FRAME
02037 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02038 #else
02039 .capabilities = CODEC_CAP_DR1,
02040 #endif
02041 .flush = flush,
02042 .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02043 };
02044 #endif
02045 #if CONFIG_MP3ADU_DECODER
02046 AVCodec ff_mp3adu_decoder = {
02047 .name = "mp3adu",
02048 .type = AVMEDIA_TYPE_AUDIO,
02049 .id = CODEC_ID_MP3ADU,
02050 .priv_data_size = sizeof(MPADecodeContext),
02051 .init = decode_init,
02052 .decode = decode_frame_adu,
02053 #if FF_API_PARSE_FRAME
02054 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02055 #else
02056 .capabilities = CODEC_CAP_DR1,
02057 #endif
02058 .flush = flush,
02059 .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02060 };
02061 #endif
02062 #if CONFIG_MP3ON4_DECODER
02063 AVCodec ff_mp3on4_decoder = {
02064 .name = "mp3on4",
02065 .type = AVMEDIA_TYPE_AUDIO,
02066 .id = CODEC_ID_MP3ON4,
02067 .priv_data_size = sizeof(MP3On4DecodeContext),
02068 .init = decode_init_mp3on4,
02069 .close = decode_close_mp3on4,
02070 .decode = decode_frame_mp3on4,
02071 .capabilities = CODEC_CAP_DR1,
02072 .flush = flush_mp3on4,
02073 .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
02074 };
02075 #endif
02076 #endif