00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "libavutil/lfg.h"
00028
00029 #include "avcodec.h"
00030 #include "internal.h"
00031 #include "get_bits.h"
00032 #include "lsp.h"
00033 #include "celp_math.h"
00034 #include "celp_filters.h"
00035 #include "acelp_filters.h"
00036 #include "acelp_vectors.h"
00037 #include "acelp_pitch_delay.h"
00038
00039 #define AMR_USE_16BIT_TABLES
00040 #include "amr.h"
00041
00042 #include "amrwbdata.h"
00043
00044 typedef struct {
00045 AVFrame avframe;
00046 AMRWBFrame frame;
00047 enum Mode fr_cur_mode;
00048 uint8_t fr_quality;
00049 float isf_cur[LP_ORDER];
00050 float isf_q_past[LP_ORDER];
00051 float isf_past_final[LP_ORDER];
00052 double isp[4][LP_ORDER];
00053 double isp_sub4_past[LP_ORDER];
00054
00055 float lp_coef[4][LP_ORDER];
00056
00057 uint8_t base_pitch_lag;
00058 uint8_t pitch_lag_int;
00059
00060 float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE];
00061 float *excitation;
00062
00063 float pitch_vector[AMRWB_SFR_SIZE];
00064 float fixed_vector[AMRWB_SFR_SIZE];
00065
00066 float prediction_error[4];
00067 float pitch_gain[6];
00068 float fixed_gain[2];
00069
00070 float tilt_coef;
00071
00072 float prev_sparse_fixed_gain;
00073 uint8_t prev_ir_filter_nr;
00074 float prev_tr_gain;
00075
00076 float samples_az[LP_ORDER + AMRWB_SFR_SIZE];
00077 float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE];
00078 float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k];
00079
00080 float hpf_31_mem[2], hpf_400_mem[2];
00081 float demph_mem[1];
00082 float bpf_6_7_mem[HB_FIR_SIZE];
00083 float lpf_7_mem[HB_FIR_SIZE];
00084
00085 AVLFG prng;
00086 uint8_t first_frame;
00087 } AMRWBContext;
00088
00089 static av_cold int amrwb_decode_init(AVCodecContext *avctx)
00090 {
00091 AMRWBContext *ctx = avctx->priv_data;
00092 int i;
00093
00094 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00095
00096 av_lfg_init(&ctx->prng, 1);
00097
00098 ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
00099 ctx->first_frame = 1;
00100
00101 for (i = 0; i < LP_ORDER; i++)
00102 ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
00103
00104 for (i = 0; i < 4; i++)
00105 ctx->prediction_error[i] = MIN_ENERGY;
00106
00107 avcodec_get_frame_defaults(&ctx->avframe);
00108 avctx->coded_frame = &ctx->avframe;
00109
00110 return 0;
00111 }
00112
00122 static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
00123 {
00124 GetBitContext gb;
00125 init_get_bits(&gb, buf, 8);
00126
00127
00128 skip_bits(&gb, 1);
00129 ctx->fr_cur_mode = get_bits(&gb, 4);
00130 ctx->fr_quality = get_bits1(&gb);
00131 skip_bits(&gb, 2);
00132
00133 return 1;
00134 }
00135
00143 static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
00144 {
00145 int i;
00146
00147 for (i = 0; i < 9; i++)
00148 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
00149
00150 for (i = 0; i < 7; i++)
00151 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
00152
00153 for (i = 0; i < 5; i++)
00154 isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
00155
00156 for (i = 0; i < 4; i++)
00157 isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
00158
00159 for (i = 0; i < 7; i++)
00160 isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
00161 }
00162
00170 static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
00171 {
00172 int i;
00173
00174 for (i = 0; i < 9; i++)
00175 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
00176
00177 for (i = 0; i < 7; i++)
00178 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
00179
00180 for (i = 0; i < 3; i++)
00181 isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
00182
00183 for (i = 0; i < 3; i++)
00184 isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
00185
00186 for (i = 0; i < 3; i++)
00187 isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
00188
00189 for (i = 0; i < 3; i++)
00190 isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
00191
00192 for (i = 0; i < 4; i++)
00193 isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
00194 }
00195
00204 static void isf_add_mean_and_past(float *isf_q, float *isf_past)
00205 {
00206 int i;
00207 float tmp;
00208
00209 for (i = 0; i < LP_ORDER; i++) {
00210 tmp = isf_q[i];
00211 isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
00212 isf_q[i] += PRED_FACTOR * isf_past[i];
00213 isf_past[i] = tmp;
00214 }
00215 }
00216
00224 static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
00225 {
00226 int i, k;
00227
00228 for (k = 0; k < 3; k++) {
00229 float c = isfp_inter[k];
00230 for (i = 0; i < LP_ORDER; i++)
00231 isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
00232 }
00233 }
00234
00246 static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
00247 uint8_t *base_lag_int, int subframe)
00248 {
00249 if (subframe == 0 || subframe == 2) {
00250 if (pitch_index < 376) {
00251 *lag_int = (pitch_index + 137) >> 2;
00252 *lag_frac = pitch_index - (*lag_int << 2) + 136;
00253 } else if (pitch_index < 440) {
00254 *lag_int = (pitch_index + 257 - 376) >> 1;
00255 *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
00256
00257 } else {
00258 *lag_int = pitch_index - 280;
00259 *lag_frac = 0;
00260 }
00261
00262 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
00263 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
00264
00265
00266
00267 } else {
00268 *lag_int = (pitch_index + 1) >> 2;
00269 *lag_frac = pitch_index - (*lag_int << 2);
00270 *lag_int += *base_lag_int;
00271 }
00272 }
00273
00279 static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
00280 uint8_t *base_lag_int, int subframe, enum Mode mode)
00281 {
00282 if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
00283 if (pitch_index < 116) {
00284 *lag_int = (pitch_index + 69) >> 1;
00285 *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
00286 } else {
00287 *lag_int = pitch_index - 24;
00288 *lag_frac = 0;
00289 }
00290
00291 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
00292 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
00293 } else {
00294 *lag_int = (pitch_index + 1) >> 1;
00295 *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
00296 *lag_int += *base_lag_int;
00297 }
00298 }
00299
00308 static void decode_pitch_vector(AMRWBContext *ctx,
00309 const AMRWBSubFrame *amr_subframe,
00310 const int subframe)
00311 {
00312 int pitch_lag_int, pitch_lag_frac;
00313 int i;
00314 float *exc = ctx->excitation;
00315 enum Mode mode = ctx->fr_cur_mode;
00316
00317 if (mode <= MODE_8k85) {
00318 decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
00319 &ctx->base_pitch_lag, subframe, mode);
00320 } else
00321 decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
00322 &ctx->base_pitch_lag, subframe);
00323
00324 ctx->pitch_lag_int = pitch_lag_int;
00325 pitch_lag_int += pitch_lag_frac > 0;
00326
00327
00328
00329 ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
00330 ac_inter, 4,
00331 pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
00332 LP_ORDER, AMRWB_SFR_SIZE + 1);
00333
00334
00335
00336 if (amr_subframe->ltp) {
00337 memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
00338 } else {
00339 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00340 ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
00341 0.18 * exc[i + 1];
00342 memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
00343 }
00344 }
00345
00347 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
00348
00350 #define BIT_POS(x, p) (((x) >> (p)) & 1)
00351
00365 static inline void decode_1p_track(int *out, int code, int m, int off)
00366 {
00367 int pos = BIT_STR(code, 0, m) + off;
00368
00369 out[0] = BIT_POS(code, m) ? -pos : pos;
00370 }
00371
00372 static inline void decode_2p_track(int *out, int code, int m, int off)
00373 {
00374 int pos0 = BIT_STR(code, m, m) + off;
00375 int pos1 = BIT_STR(code, 0, m) + off;
00376
00377 out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
00378 out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
00379 out[1] = pos0 > pos1 ? -out[1] : out[1];
00380 }
00381
00382 static void decode_3p_track(int *out, int code, int m, int off)
00383 {
00384 int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
00385
00386 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
00387 m - 1, off + half_2p);
00388 decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
00389 }
00390
00391 static void decode_4p_track(int *out, int code, int m, int off)
00392 {
00393 int half_4p, subhalf_2p;
00394 int b_offset = 1 << (m - 1);
00395
00396 switch (BIT_STR(code, 4*m - 2, 2)) {
00397 case 0:
00398 half_4p = BIT_POS(code, 4*m - 3) << (m - 1);
00399 subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
00400
00401 decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
00402 m - 2, off + half_4p + subhalf_2p);
00403 decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
00404 m - 1, off + half_4p);
00405 break;
00406 case 1:
00407 decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
00408 m - 1, off);
00409 decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
00410 m - 1, off + b_offset);
00411 break;
00412 case 2:
00413 decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
00414 m - 1, off);
00415 decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
00416 m - 1, off + b_offset);
00417 break;
00418 case 3:
00419 decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
00420 m - 1, off);
00421 decode_1p_track(out + 3, BIT_STR(code, 0, m),
00422 m - 1, off + b_offset);
00423 break;
00424 }
00425 }
00426
00427 static void decode_5p_track(int *out, int code, int m, int off)
00428 {
00429 int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
00430
00431 decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
00432 m - 1, off + half_3p);
00433
00434 decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
00435 }
00436
00437 static void decode_6p_track(int *out, int code, int m, int off)
00438 {
00439 int b_offset = 1 << (m - 1);
00440
00441 int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
00442 int half_other = b_offset - half_more;
00443
00444 switch (BIT_STR(code, 6*m - 4, 2)) {
00445 case 0:
00446 decode_1p_track(out, BIT_STR(code, 0, m),
00447 m - 1, off + half_more);
00448 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
00449 m - 1, off + half_more);
00450 break;
00451 case 1:
00452 decode_1p_track(out, BIT_STR(code, 0, m),
00453 m - 1, off + half_other);
00454 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
00455 m - 1, off + half_more);
00456 break;
00457 case 2:
00458 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
00459 m - 1, off + half_other);
00460 decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
00461 m - 1, off + half_more);
00462 break;
00463 case 3:
00464 decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
00465 m - 1, off);
00466 decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
00467 m - 1, off + b_offset);
00468 break;
00469 }
00470 }
00471
00481 static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
00482 const uint16_t *pulse_lo, const enum Mode mode)
00483 {
00484
00485
00486 int sig_pos[4][6];
00487 int spacing = (mode == MODE_6k60) ? 2 : 4;
00488 int i, j;
00489
00490 switch (mode) {
00491 case MODE_6k60:
00492 for (i = 0; i < 2; i++)
00493 decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
00494 break;
00495 case MODE_8k85:
00496 for (i = 0; i < 4; i++)
00497 decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
00498 break;
00499 case MODE_12k65:
00500 for (i = 0; i < 4; i++)
00501 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
00502 break;
00503 case MODE_14k25:
00504 for (i = 0; i < 2; i++)
00505 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
00506 for (i = 2; i < 4; i++)
00507 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
00508 break;
00509 case MODE_15k85:
00510 for (i = 0; i < 4; i++)
00511 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
00512 break;
00513 case MODE_18k25:
00514 for (i = 0; i < 4; i++)
00515 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
00516 ((int) pulse_hi[i] << 14), 4, 1);
00517 break;
00518 case MODE_19k85:
00519 for (i = 0; i < 2; i++)
00520 decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
00521 ((int) pulse_hi[i] << 10), 4, 1);
00522 for (i = 2; i < 4; i++)
00523 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
00524 ((int) pulse_hi[i] << 14), 4, 1);
00525 break;
00526 case MODE_23k05:
00527 case MODE_23k85:
00528 for (i = 0; i < 4; i++)
00529 decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
00530 ((int) pulse_hi[i] << 11), 4, 1);
00531 break;
00532 }
00533
00534 memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
00535
00536 for (i = 0; i < 4; i++)
00537 for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
00538 int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
00539
00540 fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
00541 }
00542 }
00543
00552 static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
00553 float *fixed_gain_factor, float *pitch_gain)
00554 {
00555 const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
00556 qua_gain_7b[vq_gain]);
00557
00558 *pitch_gain = gains[0] * (1.0f / (1 << 14));
00559 *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
00560 }
00561
00568
00569
00570 static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
00571 {
00572 int i;
00573
00574
00575 for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
00576 fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
00577
00578
00579 for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
00580 fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
00581 }
00582
00589
00590
00591 static float voice_factor(float *p_vector, float p_gain,
00592 float *f_vector, float f_gain)
00593 {
00594 double p_ener = (double) ff_dot_productf(p_vector, p_vector,
00595 AMRWB_SFR_SIZE) * p_gain * p_gain;
00596 double f_ener = (double) ff_dot_productf(f_vector, f_vector,
00597 AMRWB_SFR_SIZE) * f_gain * f_gain;
00598
00599 return (p_ener - f_ener) / (p_ener + f_ener);
00600 }
00601
00612 static float *anti_sparseness(AMRWBContext *ctx,
00613 float *fixed_vector, float *buf)
00614 {
00615 int ir_filter_nr;
00616
00617 if (ctx->fr_cur_mode > MODE_8k85)
00618 return fixed_vector;
00619
00620 if (ctx->pitch_gain[0] < 0.6) {
00621 ir_filter_nr = 0;
00622 } else if (ctx->pitch_gain[0] < 0.9) {
00623 ir_filter_nr = 1;
00624 } else
00625 ir_filter_nr = 2;
00626
00627
00628 if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
00629 if (ir_filter_nr < 2)
00630 ir_filter_nr++;
00631 } else {
00632 int i, count = 0;
00633
00634 for (i = 0; i < 6; i++)
00635 if (ctx->pitch_gain[i] < 0.6)
00636 count++;
00637
00638 if (count > 2)
00639 ir_filter_nr = 0;
00640
00641 if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
00642 ir_filter_nr--;
00643 }
00644
00645
00646 ctx->prev_ir_filter_nr = ir_filter_nr;
00647
00648 ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
00649
00650 if (ir_filter_nr < 2) {
00651 int i;
00652 const float *coef = ir_filters_lookup[ir_filter_nr];
00653
00654
00655
00656
00657
00658
00659
00660
00661 memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
00662 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00663 if (fixed_vector[i])
00664 ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
00665 AMRWB_SFR_SIZE);
00666 fixed_vector = buf;
00667 }
00668
00669 return fixed_vector;
00670 }
00671
00676 static float stability_factor(const float *isf, const float *isf_past)
00677 {
00678 int i;
00679 float acc = 0.0;
00680
00681 for (i = 0; i < LP_ORDER - 1; i++)
00682 acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
00683
00684
00685
00686 return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
00687 }
00688
00700 static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
00701 float voice_fac, float stab_fac)
00702 {
00703 float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
00704 float g0;
00705
00706
00707
00708
00709 if (fixed_gain < *prev_tr_gain) {
00710 g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
00711 (6226 * (1.0f / (1 << 15))));
00712 } else
00713 g0 = FFMAX(*prev_tr_gain, fixed_gain *
00714 (27536 * (1.0f / (1 << 15))));
00715
00716 *prev_tr_gain = g0;
00717
00718 return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
00719 }
00720
00727 static void pitch_enhancer(float *fixed_vector, float voice_fac)
00728 {
00729 int i;
00730 float cpe = 0.125 * (1 + voice_fac);
00731 float last = fixed_vector[0];
00732
00733 fixed_vector[0] -= cpe * fixed_vector[1];
00734
00735 for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
00736 float cur = fixed_vector[i];
00737
00738 fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
00739 last = cur;
00740 }
00741
00742 fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
00743 }
00744
00755 static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
00756 float fixed_gain, const float *fixed_vector,
00757 float *samples)
00758 {
00759 ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
00760 ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
00761
00762
00763 if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
00764 int i;
00765 float energy = ff_dot_productf(excitation, excitation,
00766 AMRWB_SFR_SIZE);
00767
00768
00769
00770 float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
00771
00772 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00773 excitation[i] += pitch_factor * ctx->pitch_vector[i];
00774
00775 ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
00776 energy, AMRWB_SFR_SIZE);
00777 }
00778
00779 ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
00780 AMRWB_SFR_SIZE, LP_ORDER);
00781 }
00782
00792 static void de_emphasis(float *out, float *in, float m, float mem[1])
00793 {
00794 int i;
00795
00796 out[0] = in[0] + m * mem[0];
00797
00798 for (i = 1; i < AMRWB_SFR_SIZE; i++)
00799 out[i] = in[i] + out[i - 1] * m;
00800
00801 mem[0] = out[AMRWB_SFR_SIZE - 1];
00802 }
00803
00812 static void upsample_5_4(float *out, const float *in, int o_size)
00813 {
00814 const float *in0 = in - UPS_FIR_SIZE + 1;
00815 int i, j, k;
00816 int int_part = 0, frac_part;
00817
00818 i = 0;
00819 for (j = 0; j < o_size / 5; j++) {
00820 out[i] = in[int_part];
00821 frac_part = 4;
00822 i++;
00823
00824 for (k = 1; k < 5; k++) {
00825 out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
00826 UPS_MEM_SIZE);
00827 int_part++;
00828 frac_part--;
00829 i++;
00830 }
00831 }
00832 }
00833
00843 static float find_hb_gain(AMRWBContext *ctx, const float *synth,
00844 uint16_t hb_idx, uint8_t vad)
00845 {
00846 int wsp = (vad > 0);
00847 float tilt;
00848
00849 if (ctx->fr_cur_mode == MODE_23k85)
00850 return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
00851
00852 tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
00853 ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
00854
00855
00856 return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
00857 }
00858
00868 static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
00869 const float *synth_exc, float hb_gain)
00870 {
00871 int i;
00872 float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
00873
00874
00875 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
00876 hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
00877
00878 ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
00879 energy * hb_gain * hb_gain,
00880 AMRWB_SFR_SIZE_16k);
00881 }
00882
00886 static float auto_correlation(float *diff_isf, float mean, int lag)
00887 {
00888 int i;
00889 float sum = 0.0;
00890
00891 for (i = 7; i < LP_ORDER - 2; i++) {
00892 float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
00893 sum += prod * prod;
00894 }
00895 return sum;
00896 }
00897
00905 static void extrapolate_isf(float isf[LP_ORDER_16k])
00906 {
00907 float diff_isf[LP_ORDER - 2], diff_mean;
00908 float *diff_hi = diff_isf - LP_ORDER + 1;
00909 float corr_lag[3];
00910 float est, scale;
00911 int i, i_max_corr;
00912
00913 isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
00914
00915
00916 for (i = 0; i < LP_ORDER - 2; i++)
00917 diff_isf[i] = isf[i + 1] - isf[i];
00918
00919 diff_mean = 0.0;
00920 for (i = 2; i < LP_ORDER - 2; i++)
00921 diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
00922
00923
00924 i_max_corr = 0;
00925 for (i = 0; i < 3; i++) {
00926 corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
00927
00928 if (corr_lag[i] > corr_lag[i_max_corr])
00929 i_max_corr = i;
00930 }
00931 i_max_corr++;
00932
00933 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00934 isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
00935 - isf[i - 2 - i_max_corr];
00936
00937
00938 est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
00939 scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
00940 (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
00941
00942 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00943 diff_hi[i] = scale * (isf[i] - isf[i - 1]);
00944
00945
00946 for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
00947 if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
00948 if (diff_hi[i] > diff_hi[i - 1]) {
00949 diff_hi[i - 1] = 5.0 - diff_hi[i];
00950 } else
00951 diff_hi[i] = 5.0 - diff_hi[i - 1];
00952 }
00953
00954 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00955 isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
00956
00957
00958 for (i = 0; i < LP_ORDER_16k - 1; i++)
00959 isf[i] *= 0.8;
00960 }
00961
00971 static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
00972 {
00973 int i;
00974 float fac = gamma;
00975
00976 for (i = 0; i < size; i++) {
00977 out[i] = lpc[i] * fac;
00978 fac *= gamma;
00979 }
00980 }
00981
00993 static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
00994 const float *exc, const float *isf, const float *isf_past)
00995 {
00996 float hb_lpc[LP_ORDER_16k];
00997 enum Mode mode = ctx->fr_cur_mode;
00998
00999 if (mode == MODE_6k60) {
01000 float e_isf[LP_ORDER_16k];
01001 double e_isp[LP_ORDER_16k];
01002
01003 ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
01004 1.0 - isfp_inter[subframe], LP_ORDER);
01005
01006 extrapolate_isf(e_isf);
01007
01008 e_isf[LP_ORDER_16k - 1] *= 2.0;
01009 ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
01010 ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
01011
01012 lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
01013 } else {
01014 lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
01015 }
01016
01017 ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
01018 (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
01019 }
01020
01032 static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
01033 float mem[HB_FIR_SIZE], const float *in)
01034 {
01035 int i, j;
01036 float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE];
01037
01038 memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
01039 memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
01040
01041 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
01042 out[i] = 0.0;
01043 for (j = 0; j <= HB_FIR_SIZE; j++)
01044 out[i] += data[i + j] * fir_coef[j];
01045 }
01046
01047 memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
01048 }
01049
01053 static void update_sub_state(AMRWBContext *ctx)
01054 {
01055 memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
01056 (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
01057
01058 memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
01059 memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
01060
01061 memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
01062 LP_ORDER * sizeof(float));
01063 memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
01064 UPS_MEM_SIZE * sizeof(float));
01065 memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
01066 LP_ORDER_16k * sizeof(float));
01067 }
01068
01069 static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
01070 int *got_frame_ptr, AVPacket *avpkt)
01071 {
01072 AMRWBContext *ctx = avctx->priv_data;
01073 AMRWBFrame *cf = &ctx->frame;
01074 const uint8_t *buf = avpkt->data;
01075 int buf_size = avpkt->size;
01076 int expected_fr_size, header_size;
01077 float *buf_out;
01078 float spare_vector[AMRWB_SFR_SIZE];
01079 float fixed_gain_factor;
01080 float *synth_fixed_vector;
01081 float synth_fixed_gain;
01082 float voice_fac, stab_fac;
01083 float synth_exc[AMRWB_SFR_SIZE];
01084 float hb_exc[AMRWB_SFR_SIZE_16k];
01085 float hb_samples[AMRWB_SFR_SIZE_16k];
01086 float hb_gain;
01087 int sub, i, ret;
01088
01089
01090 ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
01091 if ((ret = ff_get_buffer(avctx, &ctx->avframe)) < 0) {
01092 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01093 return ret;
01094 }
01095 buf_out = (float *)ctx->avframe.data[0];
01096
01097 header_size = decode_mime_header(ctx, buf);
01098 if (ctx->fr_cur_mode > MODE_SID) {
01099 av_log(avctx, AV_LOG_ERROR,
01100 "Invalid mode %d\n", ctx->fr_cur_mode);
01101 return AVERROR_INVALIDDATA;
01102 }
01103 expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
01104
01105 if (buf_size < expected_fr_size) {
01106 av_log(avctx, AV_LOG_ERROR,
01107 "Frame too small (%d bytes). Truncated file?\n", buf_size);
01108 *got_frame_ptr = 0;
01109 return AVERROR_INVALIDDATA;
01110 }
01111
01112 if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
01113 av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
01114
01115 if (ctx->fr_cur_mode == MODE_SID) {
01116 av_log_missing_feature(avctx, "SID mode", 1);
01117 return -1;
01118 }
01119
01120 ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
01121 buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
01122
01123
01124 if (ctx->fr_cur_mode == MODE_6k60) {
01125 decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
01126 } else {
01127 decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
01128 }
01129
01130 isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
01131 ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
01132
01133 stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
01134
01135 ctx->isf_cur[LP_ORDER - 1] *= 2.0;
01136 ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
01137
01138
01139 if (ctx->first_frame) {
01140 ctx->first_frame = 0;
01141 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
01142 }
01143 interpolate_isp(ctx->isp, ctx->isp_sub4_past);
01144
01145 for (sub = 0; sub < 4; sub++)
01146 ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
01147
01148 for (sub = 0; sub < 4; sub++) {
01149 const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
01150 float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
01151
01152
01153 decode_pitch_vector(ctx, cur_subframe, sub);
01154
01155 decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
01156 cur_subframe->pul_il, ctx->fr_cur_mode);
01157
01158 pitch_sharpening(ctx, ctx->fixed_vector);
01159
01160 decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
01161 &fixed_gain_factor, &ctx->pitch_gain[0]);
01162
01163 ctx->fixed_gain[0] =
01164 ff_amr_set_fixed_gain(fixed_gain_factor,
01165 ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
01166 AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
01167 ctx->prediction_error,
01168 ENERGY_MEAN, energy_pred_fac);
01169
01170
01171 voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
01172 ctx->fixed_vector, ctx->fixed_gain[0]);
01173 ctx->tilt_coef = voice_fac * 0.25 + 0.25;
01174
01175
01176 for (i = 0; i < AMRWB_SFR_SIZE; i++) {
01177 ctx->excitation[i] *= ctx->pitch_gain[0];
01178 ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
01179 ctx->excitation[i] = truncf(ctx->excitation[i]);
01180 }
01181
01182
01183 synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
01184 voice_fac, stab_fac);
01185
01186 synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
01187 spare_vector);
01188
01189 pitch_enhancer(synth_fixed_vector, voice_fac);
01190
01191 synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
01192 synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
01193
01194
01195 de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
01196 &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
01197
01198 ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
01199 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
01200 hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
01201
01202 upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
01203 AMRWB_SFR_SIZE_16k);
01204
01205
01206 ff_acelp_apply_order_2_transfer_function(hb_samples,
01207 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
01208 hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
01209
01210 hb_gain = find_hb_gain(ctx, hb_samples,
01211 cur_subframe->hb_gain, cf->vad);
01212
01213 scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
01214
01215 hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
01216 hb_exc, ctx->isf_cur, ctx->isf_past_final);
01217
01218
01219 hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
01220 &ctx->samples_hb[LP_ORDER_16k]);
01221
01222 if (ctx->fr_cur_mode == MODE_23k85)
01223 hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
01224 hb_samples);
01225
01226
01227 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
01228 sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
01229
01230
01231 update_sub_state(ctx);
01232 }
01233
01234
01235 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
01236 memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
01237
01238 *got_frame_ptr = 1;
01239 *(AVFrame *)data = ctx->avframe;
01240
01241 return expected_fr_size;
01242 }
01243
01244 AVCodec ff_amrwb_decoder = {
01245 .name = "amrwb",
01246 .type = AVMEDIA_TYPE_AUDIO,
01247 .id = CODEC_ID_AMR_WB,
01248 .priv_data_size = sizeof(AMRWBContext),
01249 .init = amrwb_decode_init,
01250 .decode = amrwb_decode_frame,
01251 .capabilities = CODEC_CAP_DR1,
01252 .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
01253 .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
01254 };