00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020 #include "avcodec.h"
00021 #include "internal.h"
00022 #include "get_bits.h"
00023 #include "put_bits.h"
00024 #include "bytestream.h"
00025 #include "adpcm.h"
00026 #include "adpcm_data.h"
00027
00060
00061 static const int xa_adpcm_table[5][2] = {
00062 { 0, 0 },
00063 { 60, 0 },
00064 { 115, -52 },
00065 { 98, -55 },
00066 { 122, -60 }
00067 };
00068
00069 static const int ea_adpcm_table[] = {
00070 0, 240, 460, 392,
00071 0, 0, -208, -220,
00072 0, 1, 3, 4,
00073 7, 8, 10, 11,
00074 0, -1, -3, -4
00075 };
00076
00077
00078 static const int swf_index_tables[4][16] = {
00079 { -1, 2 },
00080 { -1, -1, 2, 4 },
00081 { -1, -1, -1, -1, 2, 4, 6, 8 },
00082 { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
00083 };
00084
00085
00086
00087 typedef struct ADPCMDecodeContext {
00088 AVFrame frame;
00089 ADPCMChannelStatus status[6];
00090 } ADPCMDecodeContext;
00091
00092 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
00093 {
00094 ADPCMDecodeContext *c = avctx->priv_data;
00095 unsigned int min_channels = 1;
00096 unsigned int max_channels = 2;
00097
00098 switch(avctx->codec->id) {
00099 case CODEC_ID_ADPCM_EA:
00100 min_channels = 2;
00101 break;
00102 case CODEC_ID_ADPCM_EA_R1:
00103 case CODEC_ID_ADPCM_EA_R2:
00104 case CODEC_ID_ADPCM_EA_R3:
00105 case CODEC_ID_ADPCM_EA_XAS:
00106 max_channels = 6;
00107 break;
00108 }
00109 if (avctx->channels < min_channels || avctx->channels > max_channels) {
00110 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
00111 return AVERROR(EINVAL);
00112 }
00113
00114 switch(avctx->codec->id) {
00115 case CODEC_ID_ADPCM_CT:
00116 c->status[0].step = c->status[1].step = 511;
00117 break;
00118 case CODEC_ID_ADPCM_IMA_WAV:
00119 if (avctx->bits_per_coded_sample != 4) {
00120 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
00121 return -1;
00122 }
00123 break;
00124 case CODEC_ID_ADPCM_IMA_WS:
00125 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
00126 c->status[0].predictor = AV_RL32(avctx->extradata);
00127 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
00128 }
00129 break;
00130 default:
00131 break;
00132 }
00133 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00134
00135 avcodec_get_frame_defaults(&c->frame);
00136 avctx->coded_frame = &c->frame;
00137
00138 return 0;
00139 }
00140
00141 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
00142 {
00143 int step_index;
00144 int predictor;
00145 int sign, delta, diff, step;
00146
00147 step = ff_adpcm_step_table[c->step_index];
00148 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
00149 if (step_index < 0) step_index = 0;
00150 else if (step_index > 88) step_index = 88;
00151
00152 sign = nibble & 8;
00153 delta = nibble & 7;
00154
00155
00156
00157 diff = ((2 * delta + 1) * step) >> shift;
00158 predictor = c->predictor;
00159 if (sign) predictor -= diff;
00160 else predictor += diff;
00161
00162 c->predictor = av_clip_int16(predictor);
00163 c->step_index = step_index;
00164
00165 return (short)c->predictor;
00166 }
00167
00168 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
00169 {
00170 int step_index;
00171 int predictor;
00172 int diff, step;
00173
00174 step = ff_adpcm_step_table[c->step_index];
00175 step_index = c->step_index + ff_adpcm_index_table[nibble];
00176 step_index = av_clip(step_index, 0, 88);
00177
00178 diff = step >> 3;
00179 if (nibble & 4) diff += step;
00180 if (nibble & 2) diff += step >> 1;
00181 if (nibble & 1) diff += step >> 2;
00182
00183 if (nibble & 8)
00184 predictor = c->predictor - diff;
00185 else
00186 predictor = c->predictor + diff;
00187
00188 c->predictor = av_clip_int16(predictor);
00189 c->step_index = step_index;
00190
00191 return c->predictor;
00192 }
00193
00194 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
00195 {
00196 int predictor;
00197
00198 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
00199 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
00200
00201 c->sample2 = c->sample1;
00202 c->sample1 = av_clip_int16(predictor);
00203 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
00204 if (c->idelta < 16) c->idelta = 16;
00205
00206 return c->sample1;
00207 }
00208
00209 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
00210 {
00211 int sign, delta, diff;
00212 int new_step;
00213
00214 sign = nibble & 8;
00215 delta = nibble & 7;
00216
00217
00218
00219 diff = ((2 * delta + 1) * c->step) >> 3;
00220
00221 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
00222 c->predictor = av_clip_int16(c->predictor);
00223
00224 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
00225 c->step = av_clip(new_step, 511, 32767);
00226
00227 return (short)c->predictor;
00228 }
00229
00230 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
00231 {
00232 int sign, delta, diff;
00233
00234 sign = nibble & (1<<(size-1));
00235 delta = nibble & ((1<<(size-1))-1);
00236 diff = delta << (7 + c->step + shift);
00237
00238
00239 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
00240
00241
00242 if (delta >= (2*size - 3) && c->step < 3)
00243 c->step++;
00244 else if (delta == 0 && c->step > 0)
00245 c->step--;
00246
00247 return (short) c->predictor;
00248 }
00249
00250 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
00251 {
00252 if(!c->step) {
00253 c->predictor = 0;
00254 c->step = 127;
00255 }
00256
00257 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
00258 c->predictor = av_clip_int16(c->predictor);
00259 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
00260 c->step = av_clip(c->step, 127, 24567);
00261 return c->predictor;
00262 }
00263
00264 static int xa_decode(AVCodecContext *avctx,
00265 short *out, const unsigned char *in,
00266 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
00267 {
00268 int i, j;
00269 int shift,filter,f0,f1;
00270 int s_1,s_2;
00271 int d,s,t;
00272
00273 for(i=0;i<4;i++) {
00274
00275 shift = 12 - (in[4+i*2] & 15);
00276 filter = in[4+i*2] >> 4;
00277 if (filter > 4) {
00278 av_log(avctx, AV_LOG_ERROR,
00279 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
00280 filter);
00281 return AVERROR_INVALIDDATA;
00282 }
00283 f0 = xa_adpcm_table[filter][0];
00284 f1 = xa_adpcm_table[filter][1];
00285
00286 s_1 = left->sample1;
00287 s_2 = left->sample2;
00288
00289 for(j=0;j<28;j++) {
00290 d = in[16+i+j*4];
00291
00292 t = (signed char)(d<<4)>>4;
00293 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00294 s_2 = s_1;
00295 s_1 = av_clip_int16(s);
00296 *out = s_1;
00297 out += inc;
00298 }
00299
00300 if (inc==2) {
00301 left->sample1 = s_1;
00302 left->sample2 = s_2;
00303 s_1 = right->sample1;
00304 s_2 = right->sample2;
00305 out = out + 1 - 28*2;
00306 }
00307
00308 shift = 12 - (in[5+i*2] & 15);
00309 filter = in[5+i*2] >> 4;
00310 if (filter > 4) {
00311 av_log(avctx, AV_LOG_ERROR,
00312 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
00313 filter);
00314 return AVERROR_INVALIDDATA;
00315 }
00316 f0 = xa_adpcm_table[filter][0];
00317 f1 = xa_adpcm_table[filter][1];
00318
00319 for(j=0;j<28;j++) {
00320 d = in[16+i+j*4];
00321
00322 t = (signed char)d >> 4;
00323 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00324 s_2 = s_1;
00325 s_1 = av_clip_int16(s);
00326 *out = s_1;
00327 out += inc;
00328 }
00329
00330 if (inc==2) {
00331 right->sample1 = s_1;
00332 right->sample2 = s_2;
00333 out -= 1;
00334 } else {
00335 left->sample1 = s_1;
00336 left->sample2 = s_2;
00337 }
00338 }
00339
00340 return 0;
00341 }
00342
00352 static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
00353 int buf_size, int *coded_samples)
00354 {
00355 ADPCMDecodeContext *s = avctx->priv_data;
00356 int nb_samples = 0;
00357 int ch = avctx->channels;
00358 int has_coded_samples = 0;
00359 int header_size;
00360
00361 *coded_samples = 0;
00362
00363 switch (avctx->codec->id) {
00364
00365 case CODEC_ID_ADPCM_EA_XAS:
00366 if (buf_size < 76 * ch)
00367 return 0;
00368 nb_samples = 128;
00369 break;
00370 case CODEC_ID_ADPCM_IMA_QT:
00371 if (buf_size < 34 * ch)
00372 return 0;
00373 nb_samples = 64;
00374 break;
00375
00376 case CODEC_ID_ADPCM_CT:
00377 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00378 case CODEC_ID_ADPCM_IMA_WS:
00379 case CODEC_ID_ADPCM_YAMAHA:
00380 nb_samples = buf_size * 2 / ch;
00381 break;
00382 }
00383 if (nb_samples)
00384 return nb_samples;
00385
00386
00387 header_size = 0;
00388 switch (avctx->codec->id) {
00389 case CODEC_ID_ADPCM_4XM:
00390 case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
00391 case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
00392 case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
00393 }
00394 if (header_size > 0)
00395 return (buf_size - header_size) * 2 / ch;
00396
00397
00398 switch (avctx->codec->id) {
00399 case CODEC_ID_ADPCM_EA:
00400 has_coded_samples = 1;
00401 if (buf_size < 4)
00402 return 0;
00403 *coded_samples = AV_RL32(buf);
00404 *coded_samples -= *coded_samples % 28;
00405 nb_samples = (buf_size - 12) / 30 * 28;
00406 break;
00407 case CODEC_ID_ADPCM_IMA_EA_EACS:
00408 has_coded_samples = 1;
00409 if (buf_size < 4)
00410 return 0;
00411 *coded_samples = AV_RL32(buf);
00412 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
00413 break;
00414 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00415 nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
00416 break;
00417 case CODEC_ID_ADPCM_EA_R1:
00418 case CODEC_ID_ADPCM_EA_R2:
00419 case CODEC_ID_ADPCM_EA_R3:
00420
00421
00422 has_coded_samples = 1;
00423 if (buf_size < 4)
00424 return 0;
00425 switch (avctx->codec->id) {
00426 case CODEC_ID_ADPCM_EA_R1:
00427 header_size = 4 + 9 * ch;
00428 *coded_samples = AV_RL32(buf);
00429 break;
00430 case CODEC_ID_ADPCM_EA_R2:
00431 header_size = 4 + 5 * ch;
00432 *coded_samples = AV_RL32(buf);
00433 break;
00434 case CODEC_ID_ADPCM_EA_R3:
00435 header_size = 4 + 5 * ch;
00436 *coded_samples = AV_RB32(buf);
00437 break;
00438 }
00439 *coded_samples -= *coded_samples % 28;
00440 nb_samples = (buf_size - header_size) * 2 / ch;
00441 nb_samples -= nb_samples % 28;
00442 break;
00443 case CODEC_ID_ADPCM_IMA_DK3:
00444 if (avctx->block_align > 0)
00445 buf_size = FFMIN(buf_size, avctx->block_align);
00446 nb_samples = ((buf_size - 16) * 8 / 3) / ch;
00447 break;
00448 case CODEC_ID_ADPCM_IMA_DK4:
00449 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
00450 break;
00451 case CODEC_ID_ADPCM_IMA_WAV:
00452 if (avctx->block_align > 0)
00453 buf_size = FFMIN(buf_size, avctx->block_align);
00454 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
00455 break;
00456 case CODEC_ID_ADPCM_MS:
00457 if (avctx->block_align > 0)
00458 buf_size = FFMIN(buf_size, avctx->block_align);
00459 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
00460 break;
00461 case CODEC_ID_ADPCM_SBPRO_2:
00462 case CODEC_ID_ADPCM_SBPRO_3:
00463 case CODEC_ID_ADPCM_SBPRO_4:
00464 {
00465 int samples_per_byte;
00466 switch (avctx->codec->id) {
00467 case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
00468 case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
00469 case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
00470 }
00471 if (!s->status[0].step_index) {
00472 nb_samples++;
00473 buf_size -= ch;
00474 }
00475 nb_samples += buf_size * samples_per_byte / ch;
00476 break;
00477 }
00478 case CODEC_ID_ADPCM_SWF:
00479 {
00480 int buf_bits = buf_size * 8 - 2;
00481 int nbits = (buf[0] >> 6) + 2;
00482 int block_hdr_size = 22 * ch;
00483 int block_size = block_hdr_size + nbits * ch * 4095;
00484 int nblocks = buf_bits / block_size;
00485 int bits_left = buf_bits - nblocks * block_size;
00486 nb_samples = nblocks * 4096;
00487 if (bits_left >= block_hdr_size)
00488 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
00489 break;
00490 }
00491 case CODEC_ID_ADPCM_THP:
00492 has_coded_samples = 1;
00493 if (buf_size < 8)
00494 return 0;
00495 *coded_samples = AV_RB32(&buf[4]);
00496 *coded_samples -= *coded_samples % 14;
00497 nb_samples = (buf_size - 80) / (8 * ch) * 14;
00498 break;
00499 case CODEC_ID_ADPCM_XA:
00500 nb_samples = (buf_size / 128) * 224 / ch;
00501 break;
00502 }
00503
00504
00505 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
00506 return AVERROR_INVALIDDATA;
00507
00508 return nb_samples;
00509 }
00510
00511
00512 #define DK3_GET_NEXT_NIBBLE() \
00513 if (decode_top_nibble_next) \
00514 { \
00515 nibble = last_byte >> 4; \
00516 decode_top_nibble_next = 0; \
00517 } \
00518 else \
00519 { \
00520 if (end_of_packet) \
00521 break; \
00522 last_byte = *src++; \
00523 if (src >= buf + buf_size) \
00524 end_of_packet = 1; \
00525 nibble = last_byte & 0x0F; \
00526 decode_top_nibble_next = 1; \
00527 }
00528
00529 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
00530 int *got_frame_ptr, AVPacket *avpkt)
00531 {
00532 const uint8_t *buf = avpkt->data;
00533 int buf_size = avpkt->size;
00534 ADPCMDecodeContext *c = avctx->priv_data;
00535 ADPCMChannelStatus *cs;
00536 int n, m, channel, i;
00537 short *samples;
00538 const uint8_t *src;
00539 int st;
00540 int count1, count2;
00541 int nb_samples, coded_samples, ret;
00542
00543 nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
00544 if (nb_samples <= 0) {
00545 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
00546 return AVERROR_INVALIDDATA;
00547 }
00548
00549
00550 c->frame.nb_samples = nb_samples;
00551 if ((ret = ff_get_buffer(avctx, &c->frame)) < 0) {
00552 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00553 return ret;
00554 }
00555 samples = (short *)c->frame.data[0];
00556
00557
00558
00559 if (coded_samples) {
00560 if (coded_samples != nb_samples)
00561 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
00562 c->frame.nb_samples = nb_samples = coded_samples;
00563 }
00564
00565 src = buf;
00566
00567 st = avctx->channels == 2 ? 1 : 0;
00568
00569 switch(avctx->codec->id) {
00570 case CODEC_ID_ADPCM_IMA_QT:
00571
00572
00573 for (channel = 0; channel < avctx->channels; channel++) {
00574 int16_t predictor;
00575 int step_index;
00576 cs = &(c->status[channel]);
00577
00578
00579
00580 predictor = AV_RB16(src);
00581 step_index = predictor & 0x7F;
00582 predictor &= 0xFF80;
00583
00584 src += 2;
00585
00586 if (cs->step_index == step_index) {
00587 int diff = (int)predictor - cs->predictor;
00588 if (diff < 0)
00589 diff = - diff;
00590 if (diff > 0x7f)
00591 goto update;
00592 } else {
00593 update:
00594 cs->step_index = step_index;
00595 cs->predictor = predictor;
00596 }
00597
00598 if (cs->step_index > 88){
00599 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00600 cs->step_index = 88;
00601 }
00602
00603 samples = (short *)c->frame.data[0] + channel;
00604
00605 for (m = 0; m < 32; m++) {
00606 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
00607 samples += avctx->channels;
00608 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
00609 samples += avctx->channels;
00610 src ++;
00611 }
00612 }
00613 break;
00614 case CODEC_ID_ADPCM_IMA_WAV:
00615 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00616 buf_size = avctx->block_align;
00617
00618 for(i=0; i<avctx->channels; i++){
00619 cs = &(c->status[i]);
00620 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
00621
00622 cs->step_index = *src++;
00623 if (cs->step_index > 88){
00624 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00625 cs->step_index = 88;
00626 }
00627 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]);
00628 }
00629
00630 for (n = (nb_samples - 1) / 8; n > 0; n--) {
00631 for (i = 0; i < avctx->channels; i++) {
00632 cs = &c->status[i];
00633 for (m = 0; m < 4; m++) {
00634 uint8_t v = *src++;
00635 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
00636 samples += avctx->channels;
00637 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
00638 samples += avctx->channels;
00639 }
00640 samples -= 8 * avctx->channels - 1;
00641 }
00642 samples += 7 * avctx->channels;
00643 }
00644 break;
00645 case CODEC_ID_ADPCM_4XM:
00646 for (i = 0; i < avctx->channels; i++)
00647 c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
00648
00649 for (i = 0; i < avctx->channels; i++) {
00650 c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
00651 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
00652 }
00653
00654 for (i = 0; i < avctx->channels; i++) {
00655 samples = (short *)c->frame.data[0] + i;
00656 cs = &c->status[i];
00657 for (n = nb_samples >> 1; n > 0; n--, src++) {
00658 uint8_t v = *src;
00659 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
00660 samples += avctx->channels;
00661 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
00662 samples += avctx->channels;
00663 }
00664 }
00665 break;
00666 case CODEC_ID_ADPCM_MS:
00667 {
00668 int block_predictor;
00669
00670 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00671 buf_size = avctx->block_align;
00672
00673 block_predictor = av_clip(*src++, 0, 6);
00674 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00675 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00676 if (st) {
00677 block_predictor = av_clip(*src++, 0, 6);
00678 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00679 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00680 }
00681 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
00682 if (st){
00683 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
00684 }
00685
00686 c->status[0].sample1 = bytestream_get_le16(&src);
00687 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
00688 c->status[0].sample2 = bytestream_get_le16(&src);
00689 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
00690
00691 *samples++ = c->status[0].sample2;
00692 if (st) *samples++ = c->status[1].sample2;
00693 *samples++ = c->status[0].sample1;
00694 if (st) *samples++ = c->status[1].sample1;
00695 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
00696 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
00697 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
00698 }
00699 break;
00700 }
00701 case CODEC_ID_ADPCM_IMA_DK4:
00702 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00703 buf_size = avctx->block_align;
00704
00705 for (channel = 0; channel < avctx->channels; channel++) {
00706 cs = &c->status[channel];
00707 cs->predictor = (int16_t)bytestream_get_le16(&src);
00708 cs->step_index = av_clip(*src++, 0, 88);
00709 src++;
00710 *samples++ = cs->predictor;
00711 }
00712 for (n = (nb_samples >> (1 - st)) - 1; n > 0; n--, src++) {
00713 uint8_t v = *src;
00714 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
00715 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00716 }
00717 break;
00718 case CODEC_ID_ADPCM_IMA_DK3:
00719 {
00720 unsigned char last_byte = 0;
00721 unsigned char nibble;
00722 int decode_top_nibble_next = 0;
00723 int end_of_packet = 0;
00724 int diff_channel;
00725
00726 if (avctx->block_align != 0 && buf_size > avctx->block_align)
00727 buf_size = avctx->block_align;
00728
00729 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
00730 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
00731 c->status[0].step_index = av_clip(src[14], 0, 88);
00732 c->status[1].step_index = av_clip(src[15], 0, 88);
00733
00734 src += 16;
00735 diff_channel = c->status[1].predictor;
00736
00737
00738
00739 while (1) {
00740
00741
00742
00743
00744
00745 DK3_GET_NEXT_NIBBLE();
00746 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00747
00748
00749 DK3_GET_NEXT_NIBBLE();
00750 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
00751
00752
00753 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00754 *samples++ = c->status[0].predictor + c->status[1].predictor;
00755 *samples++ = c->status[0].predictor - c->status[1].predictor;
00756
00757
00758 DK3_GET_NEXT_NIBBLE();
00759 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00760
00761
00762 diff_channel = (diff_channel + c->status[1].predictor) / 2;
00763 *samples++ = c->status[0].predictor + c->status[1].predictor;
00764 *samples++ = c->status[0].predictor - c->status[1].predictor;
00765 }
00766 break;
00767 }
00768 case CODEC_ID_ADPCM_IMA_ISS:
00769 for (channel = 0; channel < avctx->channels; channel++) {
00770 cs = &c->status[channel];
00771 cs->predictor = (int16_t)bytestream_get_le16(&src);
00772 cs->step_index = av_clip(*src++, 0, 88);
00773 src++;
00774 }
00775
00776 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00777 uint8_t v1, v2;
00778 uint8_t v = *src;
00779
00780 if (st) {
00781 v1 = v >> 4;
00782 v2 = v & 0x0F;
00783 } else {
00784 v2 = v >> 4;
00785 v1 = v & 0x0F;
00786 }
00787 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
00788 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
00789 }
00790 break;
00791 case CODEC_ID_ADPCM_IMA_WS:
00792 while (src < buf + buf_size) {
00793 uint8_t v = *src++;
00794 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
00795 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00796 }
00797 break;
00798 case CODEC_ID_ADPCM_XA:
00799 while (buf_size >= 128) {
00800 if ((ret = xa_decode(avctx, samples, src, &c->status[0],
00801 &c->status[1], avctx->channels)) < 0)
00802 return ret;
00803 src += 128;
00804 samples += 28 * 8;
00805 buf_size -= 128;
00806 }
00807 break;
00808 case CODEC_ID_ADPCM_IMA_EA_EACS:
00809 src += 4;
00810
00811 for (i=0; i<=st; i++)
00812 c->status[i].step_index = av_clip(bytestream_get_le32(&src), 0, 88);
00813 for (i=0; i<=st; i++)
00814 c->status[i].predictor = bytestream_get_le32(&src);
00815
00816 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00817 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
00818 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
00819 }
00820 break;
00821 case CODEC_ID_ADPCM_IMA_EA_SEAD:
00822 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00823 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
00824 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
00825 }
00826 break;
00827 case CODEC_ID_ADPCM_EA:
00828 {
00829 int32_t previous_left_sample, previous_right_sample;
00830 int32_t current_left_sample, current_right_sample;
00831 int32_t next_left_sample, next_right_sample;
00832 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
00833 uint8_t shift_left, shift_right;
00834
00835
00836
00837
00838 src += 4;
00839
00840 current_left_sample = (int16_t)bytestream_get_le16(&src);
00841 previous_left_sample = (int16_t)bytestream_get_le16(&src);
00842 current_right_sample = (int16_t)bytestream_get_le16(&src);
00843 previous_right_sample = (int16_t)bytestream_get_le16(&src);
00844
00845 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00846 coeff1l = ea_adpcm_table[ *src >> 4 ];
00847 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
00848 coeff1r = ea_adpcm_table[*src & 0x0F];
00849 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
00850 src++;
00851
00852 shift_left = 20 - (*src >> 4);
00853 shift_right = 20 - (*src & 0x0F);
00854 src++;
00855
00856 for (count2 = 0; count2 < 28; count2++) {
00857 next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
00858 next_right_sample = sign_extend(*src, 4) << shift_right;
00859 src++;
00860
00861 next_left_sample = (next_left_sample +
00862 (current_left_sample * coeff1l) +
00863 (previous_left_sample * coeff2l) + 0x80) >> 8;
00864 next_right_sample = (next_right_sample +
00865 (current_right_sample * coeff1r) +
00866 (previous_right_sample * coeff2r) + 0x80) >> 8;
00867
00868 previous_left_sample = current_left_sample;
00869 current_left_sample = av_clip_int16(next_left_sample);
00870 previous_right_sample = current_right_sample;
00871 current_right_sample = av_clip_int16(next_right_sample);
00872 *samples++ = (unsigned short)current_left_sample;
00873 *samples++ = (unsigned short)current_right_sample;
00874 }
00875 }
00876
00877 if (src - buf == buf_size - 2)
00878 src += 2;
00879
00880 break;
00881 }
00882 case CODEC_ID_ADPCM_EA_MAXIS_XA:
00883 {
00884 int coeff[2][2], shift[2];
00885
00886 for(channel = 0; channel < avctx->channels; channel++) {
00887 for (i=0; i<2; i++)
00888 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
00889 shift[channel] = 20 - (*src & 0x0F);
00890 src++;
00891 }
00892 for (count1 = 0; count1 < nb_samples / 2; count1++) {
00893 for(i = 4; i >= 0; i-=4) {
00894 for(channel = 0; channel < avctx->channels; channel++) {
00895 int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
00896 sample = (sample +
00897 c->status[channel].sample1 * coeff[channel][0] +
00898 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
00899 c->status[channel].sample2 = c->status[channel].sample1;
00900 c->status[channel].sample1 = av_clip_int16(sample);
00901 *samples++ = c->status[channel].sample1;
00902 }
00903 }
00904 src+=avctx->channels;
00905 }
00906
00907 src = buf + buf_size;
00908 break;
00909 }
00910 case CODEC_ID_ADPCM_EA_R1:
00911 case CODEC_ID_ADPCM_EA_R2:
00912 case CODEC_ID_ADPCM_EA_R3: {
00913
00914
00915
00916
00917 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
00918 int32_t previous_sample, current_sample, next_sample;
00919 int32_t coeff1, coeff2;
00920 uint8_t shift;
00921 unsigned int channel;
00922 uint16_t *samplesC;
00923 const uint8_t *srcC;
00924 const uint8_t *src_end = buf + buf_size;
00925 int count = 0;
00926
00927 src += 4;
00928
00929 for (channel=0; channel<avctx->channels; channel++) {
00930 int32_t offset = (big_endian ? bytestream_get_be32(&src)
00931 : bytestream_get_le32(&src))
00932 + (avctx->channels-channel-1) * 4;
00933
00934 if ((offset < 0) || (offset >= src_end - src - 4)) break;
00935 srcC = src + offset;
00936 samplesC = samples + channel;
00937
00938 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
00939 current_sample = (int16_t)bytestream_get_le16(&srcC);
00940 previous_sample = (int16_t)bytestream_get_le16(&srcC);
00941 } else {
00942 current_sample = c->status[channel].predictor;
00943 previous_sample = c->status[channel].prev_sample;
00944 }
00945
00946 for (count1 = 0; count1 < nb_samples / 28; count1++) {
00947 if (*srcC == 0xEE) {
00948 srcC++;
00949 if (srcC > src_end - 30*2) break;
00950 current_sample = (int16_t)bytestream_get_be16(&srcC);
00951 previous_sample = (int16_t)bytestream_get_be16(&srcC);
00952
00953 for (count2=0; count2<28; count2++) {
00954 *samplesC = (int16_t)bytestream_get_be16(&srcC);
00955 samplesC += avctx->channels;
00956 }
00957 } else {
00958 coeff1 = ea_adpcm_table[ *srcC>>4 ];
00959 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
00960 shift = 20 - (*srcC++ & 0x0F);
00961
00962 if (srcC > src_end - 14) break;
00963 for (count2=0; count2<28; count2++) {
00964 if (count2 & 1)
00965 next_sample = sign_extend(*srcC++, 4) << shift;
00966 else
00967 next_sample = sign_extend(*srcC >> 4, 4) << shift;
00968
00969 next_sample += (current_sample * coeff1) +
00970 (previous_sample * coeff2);
00971 next_sample = av_clip_int16(next_sample >> 8);
00972
00973 previous_sample = current_sample;
00974 current_sample = next_sample;
00975 *samplesC = current_sample;
00976 samplesC += avctx->channels;
00977 }
00978 }
00979 }
00980 if (!count) {
00981 count = count1;
00982 } else if (count != count1) {
00983 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
00984 count = FFMAX(count, count1);
00985 }
00986
00987 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
00988 c->status[channel].predictor = current_sample;
00989 c->status[channel].prev_sample = previous_sample;
00990 }
00991 }
00992
00993 c->frame.nb_samples = count * 28;
00994 src = src_end;
00995 break;
00996 }
00997 case CODEC_ID_ADPCM_EA_XAS:
00998 for (channel=0; channel<avctx->channels; channel++) {
00999 int coeff[2][4], shift[4];
01000 short *s2, *s = &samples[channel];
01001 for (n=0; n<4; n++, s+=32*avctx->channels) {
01002 for (i=0; i<2; i++)
01003 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
01004 shift[n] = 20 - (src[2] & 0x0F);
01005 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
01006 s2[0] = (src[0]&0xF0) + (src[1]<<8);
01007 }
01008
01009 for (m=2; m<32; m+=2) {
01010 s = &samples[m*avctx->channels + channel];
01011 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
01012 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
01013 int level = sign_extend(*src >> (4 - i), 4) << shift[n];
01014 int pred = s2[-1*avctx->channels] * coeff[0][n]
01015 + s2[-2*avctx->channels] * coeff[1][n];
01016 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
01017 }
01018 }
01019 }
01020 }
01021 break;
01022 case CODEC_ID_ADPCM_IMA_AMV:
01023 case CODEC_ID_ADPCM_IMA_SMJPEG:
01024 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
01025 c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
01026 c->status[0].step_index = av_clip(bytestream_get_le16(&src), 0, 88);
01027 src += 4;
01028 } else {
01029 c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
01030 c->status[0].step_index = av_clip(bytestream_get_byte(&src), 0, 88);
01031 src += 1;
01032 }
01033
01034 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01035 char hi, lo;
01036 lo = *src & 0x0F;
01037 hi = *src >> 4;
01038
01039 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
01040 FFSWAP(char, hi, lo);
01041
01042 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01043 lo, 3);
01044 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01045 hi, 3);
01046 }
01047 break;
01048 case CODEC_ID_ADPCM_CT:
01049 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01050 uint8_t v = *src;
01051 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
01052 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
01053 }
01054 break;
01055 case CODEC_ID_ADPCM_SBPRO_4:
01056 case CODEC_ID_ADPCM_SBPRO_3:
01057 case CODEC_ID_ADPCM_SBPRO_2:
01058 if (!c->status[0].step_index) {
01059
01060 *samples++ = 128 * (*src++ - 0x80);
01061 if (st)
01062 *samples++ = 128 * (*src++ - 0x80);
01063 c->status[0].step_index = 1;
01064 nb_samples--;
01065 }
01066 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
01067 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01068 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01069 src[0] >> 4, 4, 0);
01070 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01071 src[0] & 0x0F, 4, 0);
01072 }
01073 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
01074 for (n = nb_samples / 3; n > 0; n--, src++) {
01075 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01076 src[0] >> 5 , 3, 0);
01077 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01078 (src[0] >> 2) & 0x07, 3, 0);
01079 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01080 src[0] & 0x03, 2, 0);
01081 }
01082 } else {
01083 for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
01084 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01085 src[0] >> 6 , 2, 2);
01086 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01087 (src[0] >> 4) & 0x03, 2, 2);
01088 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01089 (src[0] >> 2) & 0x03, 2, 2);
01090 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01091 src[0] & 0x03, 2, 2);
01092 }
01093 }
01094 break;
01095 case CODEC_ID_ADPCM_SWF:
01096 {
01097 GetBitContext gb;
01098 const int *table;
01099 int k0, signmask, nb_bits, count;
01100 int size = buf_size*8;
01101
01102 init_get_bits(&gb, buf, size);
01103
01104
01105 nb_bits = get_bits(&gb, 2)+2;
01106
01107 table = swf_index_tables[nb_bits-2];
01108 k0 = 1 << (nb_bits-2);
01109 signmask = 1 << (nb_bits-1);
01110
01111 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
01112 for (i = 0; i < avctx->channels; i++) {
01113 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
01114 c->status[i].step_index = get_bits(&gb, 6);
01115 }
01116
01117 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
01118 int i;
01119
01120 for (i = 0; i < avctx->channels; i++) {
01121
01122 int delta = get_bits(&gb, nb_bits);
01123 int step = ff_adpcm_step_table[c->status[i].step_index];
01124 long vpdiff = 0;
01125 int k = k0;
01126
01127 do {
01128 if (delta & k)
01129 vpdiff += step;
01130 step >>= 1;
01131 k >>= 1;
01132 } while(k);
01133 vpdiff += step;
01134
01135 if (delta & signmask)
01136 c->status[i].predictor -= vpdiff;
01137 else
01138 c->status[i].predictor += vpdiff;
01139
01140 c->status[i].step_index += table[delta & (~signmask)];
01141
01142 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
01143 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
01144
01145 *samples++ = c->status[i].predictor;
01146 }
01147 }
01148 }
01149 src += buf_size;
01150 break;
01151 }
01152 case CODEC_ID_ADPCM_YAMAHA:
01153 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01154 uint8_t v = *src;
01155 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
01156 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
01157 }
01158 break;
01159 case CODEC_ID_ADPCM_THP:
01160 {
01161 int table[2][16];
01162 int prev[2][2];
01163 int ch;
01164
01165 src += 4;
01166 src += 4;
01167
01168 for (i = 0; i < 32; i++)
01169 table[0][i] = (int16_t)bytestream_get_be16(&src);
01170
01171
01172 for (i = 0; i < 4; i++)
01173 prev[0][i] = (int16_t)bytestream_get_be16(&src);
01174
01175 for (ch = 0; ch <= st; ch++) {
01176 samples = (short *)c->frame.data[0] + ch;
01177
01178
01179 for (i = 0; i < nb_samples / 14; i++) {
01180 int index = (*src >> 4) & 7;
01181 unsigned int exp = *src++ & 15;
01182 int factor1 = table[ch][index * 2];
01183 int factor2 = table[ch][index * 2 + 1];
01184
01185
01186 for (n = 0; n < 14; n++) {
01187 int32_t sampledat;
01188 if(n&1) sampledat = sign_extend(*src++, 4);
01189 else sampledat = sign_extend(*src >> 4, 4);
01190
01191 sampledat = ((prev[ch][0]*factor1
01192 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
01193 *samples = av_clip_int16(sampledat);
01194 prev[ch][1] = prev[ch][0];
01195 prev[ch][0] = *samples++;
01196
01197
01198
01199 samples += st;
01200 }
01201 }
01202 }
01203 break;
01204 }
01205
01206 default:
01207 return -1;
01208 }
01209
01210 *got_frame_ptr = 1;
01211 *(AVFrame *)data = c->frame;
01212
01213 return src - buf;
01214 }
01215
01216
01217 #define ADPCM_DECODER(id_, name_, long_name_) \
01218 AVCodec ff_ ## name_ ## _decoder = { \
01219 .name = #name_, \
01220 .type = AVMEDIA_TYPE_AUDIO, \
01221 .id = id_, \
01222 .priv_data_size = sizeof(ADPCMDecodeContext), \
01223 .init = adpcm_decode_init, \
01224 .decode = adpcm_decode_frame, \
01225 .capabilities = CODEC_CAP_DR1, \
01226 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
01227 }
01228
01229
01230 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
01231 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
01232 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
01233 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
01234 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
01235 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
01236 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
01237 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
01238 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
01239 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
01240 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
01241 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
01242 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
01243 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
01244 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
01245 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
01246 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
01247 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
01248 ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
01249 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
01250 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
01251 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
01252 ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
01253 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
01254 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
01255 ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");